STRINGSTRING
DGAT2 DGAT2 DGAT3 DGAT3 LPLAT2 LPLAT2 GAL1 GAL1 APL4 APL4 DGAT1 DGAT1 LPLAT1 LPLAT1 CYCB1-1 CYCB1-1 APS1 APS1 ADG2 ADG2 APL2 APL2 WRI1 WRI1 APL3 APL3 ABCD1 ABCD1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
DGAT2Diacylglycerol O-acyltransferase 2; Involved in triacylglycerol (TAG) synthesis. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. Can use oleoyl-CoA, linoleoyl-CoA and linolenoyl-CoA as substrates. Has substrate preference for linolenoyl-CoA or oleoyl-CoA compared to linoleoyl-CoA. (314 aa)
DGAT3Diacylglycerol O-acyltransferase 3; Involved in triacylglycerol (TAG) biosynthesis. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. May preferentially use linolenoyl-CoA as substrate and to a lesser extent linoleoyl-CoA. May contribute to the active recycling of linoleate and linolenate into TAG when seed oil breakdown is blocked. (360 aa)
LPLAT2Lysophospholipid acyltransferase 2; Lysophospholipid acyltransferase with broad specificity. Mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn- glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes the acylation of lysophosphatidylserine (1-acyl-2-hydroxy-sn- glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl- sn-glycero-3-phospho-L-serine or PS) (LPSAT activity). Can convert lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphati [...] (465 aa)
GAL1Galactokinase; Sugar-1-kinase with a very high substrate specificity for the alpha-anomeric configuration of D-galacose (D-Gal). Converts also efficiently 2-deoxy-D-Gal to 2-deoxy-D-al-1-phosphate. Belongs to the GHMP kinase family. GalK subfamily. (496 aa)
APL4Probable glucose-1-phosphate adenylyltransferase large subunit, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP (By similarity); Belongs to the bacterial/plant glucose-1-phosphate adenylyltransferase family. (523 aa)
DGAT1Diacylglycerol O-acyltransferase 1; Major contributor to triacylglycerol (TAG) synthesis and oil accumulation in seeds. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. Can use palmitoyl-CoA and oleoyl-CoA as substrates. Can use oleoyl-CoA and linoleoyl-CoA as substrates. Has substrate preference for oleoyl-CoA compared to linoleoyl-CoA. Has complementary functions with PDAT1 that are essential for triacylglycerol synthesis and normal development of both seeds and pollen. (520 aa)
LPLAT1Lysophospholipid acyltransferase 1; Lysophospholipid acyltransferase with broad specificity. Mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn- glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes the acylation of lysophosphatidylserine (1-acyl-2-hydroxy-sn- glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl- sn-glycero-3-phospho-L-serine or PS) (LPSAT activity). Can convert lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphati [...] (462 aa)
CYCB1-1Cyclin-B1-1. (428 aa)
APS1Glucose-1-phosphate adenylyltransferase small subunit, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (520 aa)
ADG2Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (522 aa)
APL2Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (518 aa)
WRI1Ethylene-responsive transcription factor WRI1; May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). Transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds. Binds to the GCC-box pathogenesis-related promoter element. Promotes sugar uptake and seed oil accumulation by glycolysis. Required for embryo development, seed germination and, indirectly, for seedling establishment. [...] (430 aa)
APL3Glucose-1-phosphate adenylyltransferase large subunit 3, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (521 aa)
ABCD1ABC transporter D family member 1; Contributes to the transport of fatty acids and their derivatives (acyl CoAs) across the peroxisomal membrane. Provides acetate to the glyoxylate cycle in developing seedlings. Involved in pollen tube elongation, ovule fertilization, and seeds germination after imbibition (controls the switch between the opposing developmental programs of dormancy and germination), probably by promoting beta-oxidation of storage lipids during gluconeogenesis. Required for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. Confer [...] (1337 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (26%) [HD]