STRINGSTRING
UGT74F1 UGT74F1 UGT74F2 UGT74F2 RPS27AC RPS27AC NPR1 NPR1 CPK5 CPK5 CAMTA3 CAMTA3 ACS12 ACS12 UGT76B1 UGT76B1 SARD4 SARD4 FMO1 FMO1 ACS10 ACS10 PAD4 PAD4 ICS1 ICS1 EDS1 EDS1 ALD1 ALD1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
UGT74F1Flavonol 7-O-beta-glucosyltransferase UGT74F1; Possesses quercetin 7-O-glucosyltransferase and 4'-O- glucosyltransferase activities in vitro. Also active in vitro on benzoates and benzoate derivatives. Has low affinity for the tryptophan precursor anthranilate. Catalyzes the formation of anthranilate glucose ester. Is a minor source of this activity in the plant. Belongs to the UDP-glycosyltransferase family. (449 aa)
UGT74F2UDP-glycosyltransferase 74F2; Glycosyltransferase that glucosylates benzoic acid and derivatives. Substrate preference is benzoic acid > salicylic acid (SA) > 3-hydroxybenzoic acid > 4-hydroxybenzoic acid. Catalyzes the formation of both SA 2-O-beta-D-glucoside (SAG) and SA glucose ester (SGE). Has high affinity for the tryptophan precursor anthranilate. Catalyzes the formation of anthranilate glucose ester. Is the major source of this activity in the plant. (449 aa)
RPS27ACUbiquitin-40S ribosomal protein S27a-3; Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-11-linked is invol [...] (157 aa)
NPR1Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa)
CPK5Calcium-dependent protein kinase 5; May play a role in signal transduction pathways that involve calcium as a second messenger; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. CDPK subfamily. (556 aa)
CAMTA3Calmodulin-binding transcription activator 3; Transcription activator that binds to the DNA consensus sequence 5'-[ACG]CGCG[GTC]-3'. Binds calmodulin in a calcium-dependent manner in vitro. Regulates transcriptional activity in response to calcium signals (Probable). Involved in freezing tolerance in association with CAMTA1 and CAMTA2. Required for the cold-induced expression of DREB1B/CBF1, DREB1C/CBF2, ZAT12 and GOLS3. Involved in response to cold. Contributes together with CAMTA5 to the positive regulation of the cold-induced expression of DREB1A/CBF3, DREB1B/CBF1 and DREB1C/CBF2. I [...] (1032 aa)
ACS12Probable aminotransferase ACS12; Probable aminotransferase. Does not have 1-aminocyclopropane- 1-carboxylate synthase (ACS) activity, suggesting that it is not involved in ethylene biosynthesis. (495 aa)
UGT76B1UDP-glycosyltransferase 76B1; Glycosylates the amino acid-related molecules isoleucic acid (2-hydroxy-3-methylpentanoic acid) and valic acid (2-hydroxy-3- methylbutyric acid). Acts as a negative regulator of salicylic acid (SA)-dependent plant defense in the absence of pathogens and promotes the jasmonate (JA) response. Negatively influences the onset of senescence; Belongs to the UDP-glycosyltransferase family. (447 aa)
SARD4Protein SAR DEFICIENT 4; Involved in the biosynthesis of pipecolate (Pip), a metabolite that orchestrates defense amplification, positive regulation of salicylic acid (SA) biosynthesis, and priming to guarantee effective local resistance induction and the establishment of systemic acquired resistance (SAR). Converts delta-(1)-piperideine-2-carboxylate (P2C) to Pip. Mediates reduction of P2C and biosynthesis of Pip in systemic tissue and contributes to SAR establishment. Does not possess ornithine cyclodeaminase activity in vitro. (325 aa)
FMO1Probable flavin-containing monooxygenase 1; Required for the establishment of systemic acquired resistance (SAR). Not involved in local defense mechanisms. Confers a salicylic acid-dependent (SA) resistance to virulent pathogens such as P.syringae pv tomato and H.parasitica. (530 aa)
ACS10Probable aminotransferase ACS10; Probable aminotransferase. Does not have 1-aminocyclopropane- 1-carboxylate synthase (ACS) activity, suggesting that it is not involved in ethylene biosynthesis. (557 aa)
PAD4Lipase-like PAD4; Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe- associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumo [...] (541 aa)
ICS1Isochorismate synthase 1, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (569 aa)
EDS1Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] (623 aa)
ALD1Aminotransferase ALD1, chloroplastic; Aminotransferase involved in local and systemic acquired resistance (SAR) to the bacterial pathogen P.syringae. Required for salicylic acid (SA) and camalexin accumulation upon pathogen infection. Possesses aminotransferase activity in vitro and may generate amino- acid-derived defense signals in vivo. May be involved in ethylene- induced senescence signaling. Involved in the biosynthesis of pipecolate (Pip), a metabolite that orchestrates defense amplification, positive regulation of SA biosynthesis, and priming to guarantee effective local resist [...] (456 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (14%) [HD]