STRINGSTRING
GLX1 GLX1 RD29A RD29A CDR1 CDR1 T6D22.20 T6D22.20 F1N21.10 F1N21.10 SRK2E SRK2E RBOHD RBOHD GLO2 GLO2 CRD1 CRD1 CAO-2 CAO-2 LEA2 LEA2 F17N18.70 F17N18.70 CHLM CHLM SHM1 SHM1 PMDH2 PMDH2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GLX1Lactoylglutathione lyase GLX1; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. (283 aa)
RD29ALow-temperature-induced 78 kDa protein; Involved in responses to abiotic stresses. Regulates probably root elongation in cold conditions ; Belongs to the LTI78/LTI65 family. (710 aa)
CDR1Aspartic proteinase CDR1; Involved in salicylic acid-dependent inducible resistance responses. May release an endogenous peptide elicitor required for the activation of inducible resistance mechanisms. Possesses protease activity in vitro. (437 aa)
T6D22.20Lactoylglutathione lyase; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. (185 aa)
F1N21.10Probable lactoylglutathione lyase, chloroplastic; Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione. (350 aa)
SRK2ESerine/threonine-protein kinase SRK2E; Activator of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomata closure in response to drought, darkness, high CO(2), plant pathogens, or decreases in atmospheric relative humidity (RH). Involved in the resistance to drought by avoiding water loss. Required for the stomata closure mediated by pathogen-associated molecular pattern (PAMPs) (e.g. flg22 and LPS) of pathogenic bacteria such as P.syringae pv. tomato (Pst) and E.coli O157:H7. As a plant defense process, stomata are closed transiently in order [...] (362 aa)
RBOHDRespiratory burst oxidase homolog protein D; Calcium-dependent NADPH oxidase that generates superoxide. Involved in the generation of reactive oxygen species (ROS) during incompatible interactions with pathogens and in UV-B and abscisic acid ROS-dependent signaling. Might be required for ROS signal amplification during light stress. Belongs to the RBOH (TC 5.B.1.3) family. (921 aa)
GLO2(S)-2-hydroxy-acid oxidase GLO2. (367 aa)
CRD1Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase, chloroplastic; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME). (409 aa)
CAO-2Chlorophyllide a oxygenase, chloroplastic; Catalyzes a two-step oxygenase reaction involved in the synthesis of chlorophyll b. Acts specifically on the non-esterified chlorophyllide a and not on chlorophyll a. (536 aa)
LEA2Late embryogenis abundant protein 2; Belongs to the LEA type 3 family. (91 aa)
F17N18.70NAD(P)-binding Rossmann-fold superfamily protein. (263 aa)
CHLMMagnesium protoporphyrin IX methyltransferase, chloroplastic; Converts Mg-protoporphyrin IX to Mg-protoporphyrin IX methylester using S-adenosyl-L-methionine as a cofactor. Involved in chloroplast-to-nucleus signaling by acting as a negative effector of nuclear photosynthetic gene expression; Belongs to the class I-like SAM-binding methyltransferase superfamily. Magnesium protoporphyrin O-methyltransferase family. (312 aa)
SHM1Serine hydroxymethyltransferase 1, mitochondrial; Functions in the photorespiratory pathway in catalyzing the interconversion of serine and glycine. Involved in controlling cell damage caused by abiotic stress, such as high light and salt and the hypersensitive defense response of plants. Belongs to the SHMT family. (517 aa)
PMDH2Malate dehydrogenase 2, peroxisomal; Catalyzes a reversible NAD-dependent dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments (Probable). Peroxisomal NAD-dependent malate dehydrogenase involved in fatty acid beta-oxidation. Reoxidizes NADH from the beta- oxidation and provides NAD for the conversion of fatty acyl-CoA to acetyl-CoA. Does not participate directly in the glyoxylate cycle. Required for maintenance of photosynthetic rates under photorespiratory conditions, and carbon flow during photorespiration. Supplies NADH reductant [...] (354 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (16%) [HD]