STRINGSTRING
AHK2 AHK2 PILS1 PILS1 PME3 PME3 BCA1 BCA1 PME2 PME2 PME1 PME1 PIN7 PIN7 BCA4 BCA4 AUX1 AUX1 PIN1 PIN1 PILS2 PILS2 PILS4 PILS4 PILS3 PILS3 PIN5 PIN5 NFXL2 NFXL2 PIN2 PIN2 PILS6 PILS6 PIN3 PIN3 LAX2 LAX2 PILS5 PILS5 PIN6 PIN6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AHK2Histidine kinase 2; Cytokinins (CK) receptor related to bacterial two-component regulators. Functions as a histidine kinase and transmits the stress signal to a downstream MAPK cascade. This protein undergoes an ATP- dependent autophosphorylation at a conserved histidine residue in the kinase core, and a phosphoryl group is then transferred to a conserved aspartate residue in the receiver domain. In the presence of cytokinin, feeds phosphate to phosphorelay-integrating histidine phosphotransfer protein (HPt) and activates subsequent cascade. Involved in meristems establishment in seedl [...] (1176 aa)
PILS1Protein PIN-LIKES 1; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. (472 aa)
PME3Pectinesterase/pectinesterase inhibitor 3; Acts in the modification of cell walls via demethylesterification of cell wall pectin; In the C-terminal section; belongs to the pectinesterase family. (592 aa)
BCA1Beta carbonic anhydrase 1, chloroplastic; Reversible hydration of carbon dioxide. Required for photosynthesis in cotyledons. Binds salicylic acid. Together with BCA4, involved in the CO(2) signaling pathway which controls gas-exchange between plants and the atmosphere by modulating stomatal development and movements. Promotes water use efficiency. (347 aa)
PME2Pectinesterase 2; Acts in the modification of cell walls via demethylesterification of cell wall pectin; In the N-terminal section; belongs to the PMEI family. (587 aa)
PME1Pectinesterase 1; Acts in the modification of cell walls via demethylesterification of cell wall pectin (By similarity). Demethylates protein phosphatase 2A (PP2A) that have been reversibly carboxymethylated by LCMT1. Acts as negative regulators of genes involved in salt stress response. In the C-terminal section; belongs to the pectinesterase family. (586 aa)
PIN7Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa)
BCA4Beta carbonic anhydrase 4; Reversible hydration of carbon dioxide. Together with BCA1, involved in the CO(2) signaling pathway which controls gas-exchange between plants and the atmosphere by modulating stomatal development and movements. Promotes water use efficiency. Belongs to the beta-class carbonic anhydrase family. (280 aa)
AUX1Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa)
PIN1Auxin efflux carrier component 1; Acts as a component of the auxin efflux carrier. Seems to be involved in the basipetal auxin transport. Mediates the formation of auxin gradient which is required to ensure correct organogenesis. Coordinated polar localization of PIN1 is directly regulated by the vesicle trafficking process and apical-basal PIN1 polarity also depends on the phosphorylation of conserved serine residues by PID kinase. The ARF-GEF protein GNOM is required for the correct recycling of PIN1 between the plasma membrane and endosomal compartments. (622 aa)
PILS2Protein PIN-LIKES 2; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. (457 aa)
PILS4Protein PIN-LIKES 4; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling; Belongs to the auxin efflux carrier (TC 2.A.69.2) family. (415 aa)
PILS3Protein PIN-LIKES 3; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. (390 aa)
PIN5Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (351 aa)
NFXL2NF-X1-type zinc finger protein NFXL2; Probable transcriptional regulator. May mediate E2- or E3- dependent ubiquitination. Required to gate light sensitivity during the night. Regulates the speed of the clock by acting in the feedback loop between CCA1, LHY and APRR1/TOC1. Promotes the expression of CCA1 at night but not by days. This activational effect is enhanced by interaction with ADO1/ZTL. Association with ADO1/ZTL is not leading to the degradation of NFXL2. Confers sensitivity to osmotic stress such as high salinity. Prevents H(2)O(2) production and abscisic acid accumulation. P [...] (883 aa)
PIN2Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. (647 aa)
PILS6Protein PIN-LIKES 6; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling; Belongs to the auxin efflux carrier (TC 2.A.69.2) family. (431 aa)
PIN3Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa)
LAX2Auxin transporter-like protein 2; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex (By similarity); Belongs to the amino acid/polyamine transporter 2 family. Amino acid/auxin permease (AAAP) (TC 2.A.18.1) subfamily. (483 aa)
PILS5Protein PIN-LIKES 5; Involved in cellular auxin homeostasis by regulating auxin metabolism. Regulates intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signaling. (396 aa)
PIN6Auxin efflux carrier component 6; Component of the intracellular auxin-transport pathway. Regulates auxin transport and auxin homeostasis. Directly involved in the regulation of nectar production. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Redundantly with PIN8, inhibits the vein-formation-promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. Belongs to the auxin efflux carrier (TC 2.A.69.1) family. (570 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (22%) [HD]