Your Input: | |||||
FLS3 | Flavonol synthase 3; Catalyzes the formation of flavonols from dihydroflavonols. Possesses low activity in vitro towards dihydrokaempferol and dihydroquercetin producing kaempferol and quercitin, respectively. Belongs to the iron/ascorbate-dependent oxidoreductase family. (308 aa) | ||||
CHS | Chalcone synthase; The primary product of this enzyme is 4,2',4',6'- tetrahydroxychalcone (also termed naringenin-chalcone or chalcone) which can under specific conditions spontaneously isomerize into naringenin. (395 aa) | ||||
ANS | Probable 2-oxoglutarate-dependent dioxygenase ANS; Involved in anthocyanin and protoanthocyanidin biosynthesis by catalyzing the oxidation of leucoanthocyanidins into anthocyanidins. (353 aa) | ||||
MYB12 | Transcription factor MYB12; Flavonol-specific transcription activator involved in the regulation of several genes of flavonoid biosynthesis. Activates the expression of CHS, CHI, F3H and FLS1. Controls flavonol biosynthesis mainly in the root. Confers tolerance to UV-B. (371 aa) | ||||
FLS4 | Probable flavonol synthase 4. (279 aa) | ||||
T30B22.2 | WD40 domain-containing protein. (1530 aa) | ||||
FLS6 | Probable flavonol synthase 6. (293 aa) | ||||
F7H19.50 | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein. (153 aa) | ||||
FLS5 | Probable flavonol synthase 5; Belongs to the iron/ascorbate-dependent oxidoreductase family. (325 aa) | ||||
FLS1 | Flavonol synthase/flavanone 3-hydroxylase; Catalyzes the formation of flavonols from dihydroflavonols. It can act on dihydrokaempferol to produce kaempferol, on dihydroquercetin to produce quercitin and on dihydromyricetin to produce myricetin. In vitro catalyzes the oxidation of both enantiomers of naringenin to give both cis- and trans-dihydrokaempferol. Belongs to the iron/ascorbate-dependent oxidoreductase family. (336 aa) | ||||
LDOX | Leucoanthocyanidin dioxygenase; Involved in anthocyanin and protoanthocyanidin biosynthesis by catalyzing the oxidation of leucoanthocyanidins into anthocyanidins. Possesses low flavonol synthase activity in vitro towards dihydrokaempferol and dihydroquercetin producing kaempferol and quercitin, respectively. Belongs to the iron/ascorbate-dependent oxidoreductase family. (356 aa) | ||||
GAPCP2 | Glyceraldehyde-3-phosphate dehydrogenase GAPCP2, chloroplastic; Involved in plastidial glycolytic pathway and plays a specific role in glycolytic energy production in non-green plastids and chloroplasts. Essential for breakdown of starch to form sucrose for export to non-photosynthetic tissues, and to generate primary metabolites for anabolic pathways such as fatty acid and amino acid synthesis. Plays an important role in plant development by providing substrates for the phosphorylated pathway of serine biosynthesis in roots. Plays a crucial role in pollen development. Functionally red [...] (420 aa) | ||||
CYP73A5 | Trans-cinnamate 4-monooxygenase; Controls carbon flux to pigments essential for pollination or UV protection, to numerous pytoalexins synthesized by plants when challenged by pathogens, and to lignins. (505 aa) | ||||
DFRA | Dihydroflavonol 4-reductase; Bifunctional enzyme involved in flavonoid metabolism. (382 aa) | ||||
PAL3 | Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. (694 aa) | ||||
PAL2 | Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (717 aa) | ||||
PAL1 | Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (725 aa) | ||||
PAL4 | Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (707 aa) | ||||
CYP75B1 | Flavonoid 3'-monooxygenase; Catalyzes the 3'-hydroxylation of the flavonoid B-ring to the 3',4'-hydroxylated state. Convert naringenin to eriodictyol and dihydrokaempferol to dihydroquercetin; Belongs to the cytochrome P450 family. (513 aa) | ||||
GAPCP1 | Glyceraldehyde-3-phosphate dehydrogenase GAPCP1, chloroplastic; Involved in plastidial glycolytic pathway and plays a specific role in glycolytic energy production in non-green plastids and chloroplasts. Essential for breakdown of starch to form sucrose for export to non-photosynthetic tissues, and to generate primary metabolites for anabolic pathways such as fatty acid and amino acid synthesis. Plays an important role in plant development by providing substrates for the phosphorylated pathway of serine biosynthesis in roots. Plays a crucial role in pollen development. Functionally red [...] (422 aa) | ||||
F3H | Naringenin,2-oxoglutarate 3-dioxygenase; Catalyzes the 3-beta-hydroxylation of 2S-flavanones to 2R,3R- dihydroflavonols which are intermediates in the biosynthesis of flavonols, anthocyanidins, catechins and proanthocyanidins in plants. (358 aa) | ||||
GAPC2 | Glyceraldehyde-3-phosphate dehydrogenase GAPC2, cytosolic; Key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3- phospho-D-glyceroyl phosphate. Essential for the maintenance of cellular ATP levels and carbohydrate metabolism (By similarity). Binds DNA in vitro. (338 aa) | ||||
GAPC1 | Glyceraldehyde-3-phosphate dehydrogenase GAPC1, cytosolic; Key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3- phospho-D-glyceroyl phosphate. Essential for the maintenance of cellular ATP levels and carbohydrate metabolism. Required for full fertility. Involved in response to oxidative stress by mediating plant responses to abscisic acid (ABA) and water deficits through the activation of PLDDELTA and production of phosphatidic acid (PA), a multifunctional stress signaling lipid in plants. Associates with FBA6 to [...] (338 aa) |