STRINGSTRING
PIN5 PIN5 PHYB PHYB T4L20.30 T4L20.30 TIR1 TIR1 WAT1 WAT1 AUX1 AUX1 GH3.17 GH3.17 PIN8 PIN8 YUC1 YUC1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PIN5Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (351 aa)
PHYBPhytochrome B; Regulatory photoreceptor which exists in two forms that are reversibly interconvertible by light: the Pr form that absorbs maximally in the red region of the spectrum and the Pfr form that absorbs maximally in the far-red region. Photoconversion of Pr to Pfr induces an array of morphogenetic responses, whereas reconversion of Pfr to Pr cancels the induction of those responses. Pfr controls the expression of a number of nuclear genes including those encoding the small subunit of ribulose-bisphosphate carboxylase, chlorophyll A/B binding protein, protochlorophyllide reduct [...] (1172 aa)
T4L20.30Coatomer subunit gamma; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (By similarity). (886 aa)
TIR1Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. (594 aa)
WAT1Protein WALLS ARE THIN 1; Required for secondary wall formation in fibers, especially in short days conditions. Promotes indole metabolism and transport (e.g. tryptophan, neoglucobrassicin and auxin (indole-3-acetic acid)). May prevent salicylic-acid (SA) accumulation. Belongs to the drug/metabolite transporter (DMT) superfamily. Plant drug/metabolite exporter (P-DME) (TC 2.A.7.4) family. (389 aa)
AUX1Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa)
GH3.17Indole-3-acetic acid-amido synthetase GH3.17; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Appears to favor Glu over Asp while the other GH3 favor Asp over Glu. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4- [...] (609 aa)
PIN8Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (367 aa)
YUC1Probable indole-3-pyruvate monooxygenase YUCCA1; Involved in auxin biosynthesis, but not in the tryptamine or the CYP79B2/B3 branches. Catalyzes in vitro the N-oxidation of tryptamine to form N-hydroxyl tryptamine. Involved during embryogenesis and seedling development. Required for the formation of floral organs and vascular tissues. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in shoots. (414 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (24%) [HD]