Your Input: | |||||
PDAT2 | Putative phospholipid:diacylglycerol acyltransferase 2; Belongs to the AB hydrolase superfamily. Lipase family. (665 aa) | ||||
PDAT1 | Phospholipid:diacylglycerol acyltransferase 1; Triacylglycerol formation by an acyl-CoA independent pathway. The enzyme preferentially transfers acyl groups from the sn-2 position of a phospholipid to diacylglycerol, thus forming an sn-1- lysophospholipid. Involved in epoxy and hydroxy fatty acid accumulation in seeds. Has complementary functions with DAG1 that are essential for triacylglycerol synthesis and normal development of both seeds and pollen. (671 aa) | ||||
LACS9 | Long chain acyl-CoA synthetase 9, chloroplastic; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate. (691 aa) | ||||
LPLAT2 | Lysophospholipid acyltransferase 2; Lysophospholipid acyltransferase with broad specificity. Mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn- glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes the acylation of lysophosphatidylserine (1-acyl-2-hydroxy-sn- glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl- sn-glycero-3-phospho-L-serine or PS) (LPSAT activity). Can convert lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphati [...] (465 aa) | ||||
DGAT2 | Diacylglycerol O-acyltransferase 2; Involved in triacylglycerol (TAG) synthesis. Catalyzes the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. Can use oleoyl-CoA, linoleoyl-CoA and linolenoyl-CoA as substrates. Has substrate preference for linolenoyl-CoA or oleoyl-CoA compared to linoleoyl-CoA. (314 aa) | ||||
ACX4 | Acyl-coenzyme A oxidase 4, peroxisomal; Catalyzes the desaturation of short-chain acyl-CoAs to 2- trans-enoyl-CoAs. Active on butyryl-CoA (C4), hexanoyl-CoA (C6), and octanoyl-CoA (C8). Has no activity as acyl-CoA dehydrogenase or on crotonyl-CoA (an unsaturated C4:1 carbocyclic ester) or glutaryl-CoA (a dicarboxylic ester). (436 aa) | ||||
WSD1 | O-acyltransferase WSD1; Bifunctional wax ester synthase/diacylglycerol acyltransferase. Involved in cuticular wax biosynthesis. In the N-terminal section; belongs to the long-chain O- acyltransferase family. (481 aa) | ||||
KAS | 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial; Catalyzes all the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Able to elongate saturated acyl chains from 4 to at least 16 carbons. Uses malonyl-CoA but not acetyl-CoA as primer substrate. When expressed in a heterologous system, reveals a bimodal distribution of products, with peaks at C8 and C14-C16. The major product of the reaction (octanoyl-ACP) is required for the lipoylation of essential mitochondrial proteins. (461 aa) | ||||
WRI1 | Ethylene-responsive transcription factor WRI1; May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). Transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds. Binds to the GCC-box pathogenesis-related promoter element. Promotes sugar uptake and seed oil accumulation by glycolysis. Required for embryo development, seed germination and, indirectly, for seedling establishment. [...] (430 aa) | ||||
ECHIA | Probable enoyl-CoA hydratase 1, peroxisomal; Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate. (265 aa) | ||||
ATS1 | Glycerol-3-phosphate acyltransferase, chloroplastic; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate. The enzyme from chilling-resistant plants discriminates against non-fluid palmitic acid and selects oleic acid whereas the enzyme from sensitive plants accepts both fatty acids. This is an oleate-selective acyltransferase. (459 aa) | ||||
FATA | Oleoyl-acyl carrier protein thioesterase 1, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for oleoyl- ACP versus other acyl-ACPs. Substrate preference is 18:1 > 18:0 > 16:1. (362 aa) | ||||
ABI4 | Ethylene-responsive transcription factor ABI4; Transcription regulator that probably binds to the GCC-box pathogenesis-related promoter element. Binds also to the S-box (5'- CACTTCCA-3') photosynthesis-associated nuclear genes-related (PhANGs- related) promoter element, and thus acts as a transcription inhibitor. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways. May have a function in the deetiolation process. Confers sensitivity to abscisic acid (ABA), and regulates the ABA signaling pathway during seed germinatio [...] (328 aa) | ||||
LPLAT1 | Lysophospholipid acyltransferase 1; Lysophospholipid acyltransferase with broad specificity. Mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn- glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes the acylation of lysophosphatidylserine (1-acyl-2-hydroxy-sn- glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl- sn-glycero-3-phospho-L-serine or PS) (LPSAT activity). Can convert lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphati [...] (462 aa) | ||||
FAB2 | Stearoyl-[acyl-carrier-protein] 9-desaturase 7, chloroplastic; Converts stearoyl-ACP to oleoyl-ACP by introduction of a cis double bond between carbons 9 and 10 of the acyl chain. Required for the activation of certain jasmonic acid (JA)-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Belongs to the fatty acid desaturase type 2 family. (401 aa) | ||||
ACX2 | Acyl-coenzyme A oxidase 2, peroxisomal; Catalyzes the desaturation of long-chain acyl-CoAs to 2- trans-enoyl-CoAs. Active on substrates longer than C14 and mostly with C18-CoA. Activity on long-chain mono-unsaturated substrates is double than with the corresponding saturated substrates. (692 aa) | ||||
ACX1 | Peroxisomal acyl-coenzyme A oxidase 1; Catalyzes the desaturation of both long- and medium-chain acyl-CoAs to 2-trans-enoyl-CoAs. Most active with C14-CoA. Activity on long-chain mono-unsaturated substrates is 40% higher than with the corresponding saturated substrates. Seems to be an important factor in the general metabolism of root tips. May be involved in the biosynthesis of jasmonic acid. (664 aa) | ||||
GGH2 | Gamma-glutamyl hydrolase 2; Cleaves the polyglutamate sidechains of folate polyglutamates in the vacuole. Is important for polyglutamyl tail length determination before vacuolar exit. Plays a role on folate stability and intracellular folate content. Has endopeptidase activity against 4- amino-10-methylpteroyl penta-, tetra-, tri- and di-gamma-L-glutamate substrates and is responsible for the production of folic acid, also called pteroylglutamic acid (PteGlu) from teroylpolyglutamates. Belongs to the peptidase C26 family. (347 aa) | ||||
ACX3 | Acyl-coenzyme A oxidase 3, peroxisomal; Catalyzes the desaturation of medium-chain acyl-CoAs to 2- trans-enoyl-CoAs. Active on C8:0- to C14:0-CoA with a maximal activity on C12:0-CoA. (675 aa) | ||||
F3E22.17 | Putative acyl-coenzyme A oxidase At3g06690. (187 aa) | ||||
FAD2 | Delta(12)-fatty-acid desaturase; ER (microsomal) omega-6 fatty acid desaturase introduces the second double bond in the biosynthesis of 18:3 fatty acids, important constituents of plant membranes. Delta(12)-desaturase with regioselectivity determined by the double bond (delta(9) position) and carboxyl group of the substrate. Can use both 16:1 and 18:1 fatty acids as substrates. It is thought to use cytochrome b5 as an electron donor and to act on fatty acids esterified to phosphatidylcholine (PC) and, possibly, other phospholipids. Very low constitutive hydroxylation activity. Required [...] (383 aa) | ||||
AP2 | Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] (432 aa) | ||||
FAD3 | Acyl-lipid omega-3 desaturase (cytochrome b5), endoplasmic reticulum; Microsomal (ER) omega-3 fatty acid desaturase introduces the third double bond in the biosynthesis of 18:3 fatty acids, important constituents of plant membranes. It is thought to use cytochrome b5 as an electron donor and to act on fatty acids esterified to phosphatidylcholine and, possibly, other phospholipids. (386 aa) | ||||
LEC2 | B3 domain-containing transcription factor LEC2; Transcription regulator that plays a central role in embryo development. Required for the maintenance of suspensor morphology, specification of cotyledon identity, progression through the maturation phase and suppression of premature germination. Ectopic expression is sufficient to promote somatic embryogenesis. (363 aa) | ||||
KAS_III | 3-oxoacyl-[acyl-carrier-protein] synthase III, chloroplastic; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. KAS III catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities (By similarity); Belongs to the thiolase-like superfamily. FabH family. (404 aa) | ||||
GGH3 | Probable gamma-glutamyl hydrolase 3; Cleaves the polyglutamate sidechains of folate polyglutamates in the vacuole. Is important for polyglutamyl tail length determination before vacuolar exit. Plays a role on folate stability and intracellular folate content (By similarity). (352 aa) | ||||
ACX1.2 | Putative peroxisomal acyl-coenzyme A oxidase 1.2; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl- CoAs. (664 aa) | ||||
GGH1 | Gamma-glutamyl hydrolase 1; Cleaves the polyglutamate sidechains of folate polyglutamates in the vacuole. Is important for polyglutamyl tail length determination before vacuolar exit. Plays a role in folate stability and intracellular folate content; Belongs to the peptidase C26 family. (348 aa) | ||||
FATA2 | Oleoyl-acyl carrier protein thioesterase 2, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for oleoyl- ACP versus other acyl-ACPs. (367 aa) | ||||
MYB89 | Putative transcription factor. (190 aa) | ||||
FATB | Palmitoyl-acyl carrier protein thioesterase, chloroplastic; Plays an essential role in chain termination during de novo fatty acid synthesis. Possesses high thioesterase activity for palmitoyl-ACP versus other acyl-ACPs. Substrate preference is 16:0 > 18:1 > 18:0 > 16:1. Plays an essential role in the supply of saturated fatty acids necessary for plant growth and seed development. Contributes to 16:0 production particularly in flowers. May be involved in the synthesis of long chain fatty acid. (412 aa) | ||||
LACS8 | Long chain acyl-CoA synthetase 8; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (720 aa) | ||||
NFYB9 | Nuclear transcription factor Y subunit B-9; Component of the NF-Y/HAP transcription factor complex. The NF-Y complex stimulates the transcription of various genes by recognizing and binding to a CCAAT motif in promoters. Acts as a central regulator of the embryogenesis. Required for the speciation of cotyledon identity and the completion of embryo maturation. Controls seed storage protein genes through the regulation of FUS3 and ABI3. Involved in the blue light (BL) and abscisic acid (ABA) signaling pathways; Belongs to the NFYB/HAP3 subunit family. (238 aa) | ||||
FUS3 | B3 domain-containing transcription factor FUS3; Transcription regulator involved in gene regulation during late embryogenesis. Its expression to the epidermis is sufficient to control foliar organ identity by regulating positively the synthesis abscisic acid (ABA) and negatively gibberellin production. Negatively regulates TTG1 in the embryo. Positively regulates the abundance of the ABI3 protein in the seed. Cooperates with KIN10 to regulate developmental phase transitions and lateral organ development and act both as positive regulators of abscisic acid (ABA) signaling during germination. (313 aa) | ||||
ACX3.2 | Putative acyl-coenzyme A oxidase 3.2, peroxisomal; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl- CoAs. (675 aa) |