STRINGSTRING
SEP3 SEP3 SOC1 SOC1 AP2 AP2 APS1 APS1 ADG2 ADG2 APL2 APL2 APL3 APL3 SUS2 SUS2 LFY LFY AMY2 AMY2 AMY1 AMY1 AMY3 AMY3 TEM1 TEM1 APL4 APL4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SEP3Developmental protein SEPALLATA 3; Probable transcription factor active in inflorescence development and floral organogenesis. Functions with SEPALLATA1/AGL2 and SEPALLATA2/AGL4 to ensure proper development of petals, stamens and carpels and to prevent the indeterminate growth of the flower meristem. Interacts with APETALA1, AGAMOUS or APETALA3/PISTILLATA to form complexes, that could be involved in genes regulation during floral meristem development. Binds specifically to the CArG box DNA sequence 5'-CC (A/T)6 GG-3'. (251 aa)
SOC1MADS-box protein SOC1; Transcription activator active in flowering time control. May integrate signals from the photoperiod, vernalization and autonomous floral induction pathways. Can modulate class B and C homeotic genes expression. When associated with AGL24, mediates effect of gibberellins on flowering under short-day conditions, and regulates the expression of LEAFY (LFY), which links floral induction and floral development. (214 aa)
AP2Floral homeotic protein APETALA 2; Probable transcriptional activator that promotes early floral meristem identity. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes. Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and [...] (432 aa)
APS1Glucose-1-phosphate adenylyltransferase small subunit, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (520 aa)
ADG2Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (522 aa)
APL2Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (518 aa)
APL3Glucose-1-phosphate adenylyltransferase large subunit 3, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP. (521 aa)
SUS2Sucrose synthase 2; Sucrose-cleaving enzyme that provides UDP-glucose and fructose for various metabolic pathways. Modulates metabolic homeostasis and directs carbon towards starch synthesis in developing seeds. (807 aa)
LFYProtein LEAFY; Probable transcription factor that promotes early floral meristem identity in synergy with APETALA1. Is required subsequently for the transition of an inflorescence meristem into a floral meristem, by an immediate upstream regulation of the ABC classes of floral homeotic genes. Activates directly APETALA1, CAULIFLOWER and AGAMOUS, and indirectly APETALA3 and PISTILLATA with the cooperation of UFO. Belongs to the FLO/LFY family. (420 aa)
AMY2Probable alpha-amylase 2; Probable alpha-amylase that does not seem to be required for breakdown of transitory starch in leaves. (413 aa)
AMY1Alpha-amylase 1; Possesses alpha-amylase activity in vitro, but seems not required for breakdown of transitory starch in leaves. (423 aa)
AMY3Alpha-amylase 3, chloroplastic; Possesses endoamylolytic activity in vitro, but seems not required for breakdown of transitory starch in leaves. May be involved in the determination of the final structure of glucans by shortening long linear phospho-oligosaccharides in the chloroplast stroma. Can act on both soluble and insoluble glucan substrates to release small linear and branched malto-oligosaccharides. Works synergistically with beta-amylase toward efficient starch degradation. Has activity against p-nitrophenyl maltoheptaoside (BPNP-G7), amylopectin and beta-limit dextrin. Involv [...] (887 aa)
TEM1AP2/ERF and B3 domain-containing transcription repressor TEM1; Transcriptional repressor of flowering time on long day plants. Acts directly on FT expression by binding 5'-CAACA-3' and 5'- CACCTG-3 sequences. Functionally redundant with TEM2. Belongs to the AP2/ERF transcription factor family. RAV subfamily. (361 aa)
APL4Probable glucose-1-phosphate adenylyltransferase large subunit, chloroplastic; This protein plays a role in synthesis of starch. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from Glc-1-P and ATP (By similarity); Belongs to the bacterial/plant glucose-1-phosphate adenylyltransferase family. (523 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (14%) [HD]