node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ERF4 | SNL3 | O80340 | O48686 | Ethylene-responsive transcription factor 4; Acts as a transcriptional repressor. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways, and could also regulate other AtERFs. | Paired amphipathic helix protein Sin3-like 3; Acts as a transcriptional repressor. Interacts with ERF7 to repress genes in abscisic acid and drought stress responses. The heterodimer represses transcription by tethering SNL3 to DNA. | 0.477 |
ERF7 | HDA15 | Q9LDE4 | Q8GXJ1 | Ethylene-responsive transcription factor 7; Involved in the regulation of gene expression by abscisic acid, stress factors and by components of stress signal transduction pathways. Transcription factor that binds to the GCC-box pathogenesis- related promoter element. Part of a transcriptional repressor complex including a histone deacetylase. | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | 0.404 |
ERF7 | HDA6 | Q9LDE4 | Q9FML2 | Ethylene-responsive transcription factor 7; Involved in the regulation of gene expression by abscisic acid, stress factors and by components of stress signal transduction pathways. Transcription factor that binds to the GCC-box pathogenesis- related promoter element. Part of a transcriptional repressor complex including a histone deacetylase. | Histone deacetylase 6; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Might remove acetyl residues only from specific targets, such as rDNA repeats or complex transgenes. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Required for rRNA gene silencing in nucleolar dominance. Plays a role in transgene silencing, but this e [...] | 0.570 |
ERF7 | SNL3 | Q9LDE4 | O48686 | Ethylene-responsive transcription factor 7; Involved in the regulation of gene expression by abscisic acid, stress factors and by components of stress signal transduction pathways. Transcription factor that binds to the GCC-box pathogenesis- related promoter element. Part of a transcriptional repressor complex including a histone deacetylase. | Paired amphipathic helix protein Sin3-like 3; Acts as a transcriptional repressor. Interacts with ERF7 to repress genes in abscisic acid and drought stress responses. The heterodimer represses transcription by tethering SNL3 to DNA. | 0.979 |
ERF7 | SRT2 | Q9LDE4 | Q94AQ6 | Ethylene-responsive transcription factor 7; Involved in the regulation of gene expression by abscisic acid, stress factors and by components of stress signal transduction pathways. Transcription factor that binds to the GCC-box pathogenesis- related promoter element. Part of a transcriptional repressor complex including a histone deacetylase. | NAD-dependent protein deacylase SRT2; NAD-dependent protein deacylase. Catalyzes the NAD-dependent hydrolysis of acyl groups from lysine residues (By similarity). Negatively regulates plant basal defense against plant pathogens, possibly by suppressing salicylic acid biosynthesis. Belongs to the sirtuin family. Class II subfamily. | 0.431 |
HDA14 | HDA2 | Q941D6 | Q944K3 | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | 0.618 |
HDA14 | HDA6 | Q941D6 | Q9FML2 | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Histone deacetylase 6; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Might remove acetyl residues only from specific targets, such as rDNA repeats or complex transgenes. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Required for rRNA gene silencing in nucleolar dominance. Plays a role in transgene silencing, but this e [...] | 0.715 |
HDA14 | HOS15 | Q941D6 | Q9FN19 | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | WD40 repeat-containing protein HOS15; Acts as repressor of cold stress-regulated gene expression. Interacts specifically with and promotes deacetylation of histone H4. Plays a role in gene regulation for plant acclimation and tolerance to cold stress. | 0.544 |
HDA14 | SNL3 | Q941D6 | O48686 | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Paired amphipathic helix protein Sin3-like 3; Acts as a transcriptional repressor. Interacts with ERF7 to repress genes in abscisic acid and drought stress responses. The heterodimer represses transcription by tethering SNL3 to DNA. | 0.689 |
HDA14 | SRT1 | Q941D6 | Q9FE17 | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | NAD-dependent protein deacetylase SRT1; NAD-dependent protein deacetylase. Has deacetylase activity towards H3K9Ac. May have a function in the safeguard against genome instabiliy and DNA damage to ensure plant cell growth (By similarity). Belongs to the sirtuin family. Class IV subfamily. | 0.877 |
HDA14 | SRT2 | Q941D6 | Q94AQ6 | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | NAD-dependent protein deacylase SRT2; NAD-dependent protein deacylase. Catalyzes the NAD-dependent hydrolysis of acyl groups from lysine residues (By similarity). Negatively regulates plant basal defense against plant pathogens, possibly by suppressing salicylic acid biosynthesis. Belongs to the sirtuin family. Class II subfamily. | 0.938 |
HDA15 | ERF7 | Q8GXJ1 | Q9LDE4 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Ethylene-responsive transcription factor 7; Involved in the regulation of gene expression by abscisic acid, stress factors and by components of stress signal transduction pathways. Transcription factor that binds to the GCC-box pathogenesis- related promoter element. Part of a transcriptional repressor complex including a histone deacetylase. | 0.404 |
HDA15 | HDA2 | Q8GXJ1 | Q944K3 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | 0.597 |
HDA15 | HDA6 | Q8GXJ1 | Q9FML2 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Histone deacetylase 6; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Might remove acetyl residues only from specific targets, such as rDNA repeats or complex transgenes. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Required for rRNA gene silencing in nucleolar dominance. Plays a role in transgene silencing, but this e [...] | 0.735 |
HDA15 | HOS15 | Q8GXJ1 | Q9FN19 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | WD40 repeat-containing protein HOS15; Acts as repressor of cold stress-regulated gene expression. Interacts specifically with and promotes deacetylation of histone H4. Plays a role in gene regulation for plant acclimation and tolerance to cold stress. | 0.704 |
HDA15 | SNL3 | Q8GXJ1 | O48686 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Paired amphipathic helix protein Sin3-like 3; Acts as a transcriptional repressor. Interacts with ERF7 to repress genes in abscisic acid and drought stress responses. The heterodimer represses transcription by tethering SNL3 to DNA. | 0.706 |
HDA15 | SRT1 | Q8GXJ1 | Q9FE17 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | NAD-dependent protein deacetylase SRT1; NAD-dependent protein deacetylase. Has deacetylase activity towards H3K9Ac. May have a function in the safeguard against genome instabiliy and DNA damage to ensure plant cell growth (By similarity). Belongs to the sirtuin family. Class IV subfamily. | 0.870 |
HDA15 | SRT2 | Q8GXJ1 | Q94AQ6 | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | NAD-dependent protein deacylase SRT2; NAD-dependent protein deacylase. Catalyzes the NAD-dependent hydrolysis of acyl groups from lysine residues (By similarity). Negatively regulates plant basal defense against plant pathogens, possibly by suppressing salicylic acid biosynthesis. Belongs to the sirtuin family. Class II subfamily. | 0.872 |
HDA2 | HDA14 | Q944K3 | Q941D6 | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Histone deacetylase 14; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | 0.618 |
HDA2 | HDA15 | Q944K3 | Q8GXJ1 | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | Histone deacetylase 15; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). | 0.597 |