STRINGSTRING
PAL4 PAL4 CCR2-2 CCR2-2 CCR1-2 CCR1-2 F3H F3H T26I12.60 T26I12.60 F6'H1 F6'H1 F2P24.13 F2P24.13 CSE CSE F6'H2 F6'H2 F12L6.8 F12L6.8 DFRA DFRA PAL3 PAL3 PAL2 PAL2 PAL1 PAL1 F17A22.2 F17A22.2 CYP98A3 CYP98A3 F4IZK0_ARATH F4IZK0_ARATH T21H19.40 T21H19.40
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PAL4Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (707 aa)
CCR2-2Cinnamoyl-CoA reductase 2; Cinnamoyl-CoA reductase probably involved in the formation of phenolic compounds associated with the hypersensitive response. Seems not to be involved in lignin biosynthesis. Belongs to the NAD(P)-dependent epimerase/dehydratase family. Dihydroflavonol-4-reductase subfamily. (332 aa)
CCR1-2Cinnamoyl-CoA reductase 1; Involved in the latter stages of lignin biosynthesis. Catalyzes one of the last steps of monolignol biosynthesis, the conversion of cinnamoyl-CoAs into their corresponding cinnamaldehydes. (344 aa)
F3HNaringenin,2-oxoglutarate 3-dioxygenase; Catalyzes the 3-beta-hydroxylation of 2S-flavanones to 2R,3R- dihydroflavonols which are intermediates in the biosynthesis of flavonols, anthocyanidins, catechins and proanthocyanidins in plants. (358 aa)
T26I12.60Alpha/beta-Hydrolases superfamily protein. (312 aa)
F6'H1Feruloyl CoA ortho-hydroxylase 1; 2-oxoglutarate (OG)- and Fe(II)-dependent dioxygenase (2OGD) involved in scopoletin biosynthesis. Converts feruloyl CoA into 6'-hydroxyferuloyl CoA but has no activity with ferulic acid, feruloylquinic acid, caffeic acid, caffeoyl CoA, p- coumaric acid, cinnamic acid, cinnamoyl CoA or benzoyl CoA. Required for the production and secretion of compounds (e.g. fluorescent coumarins) that facilitate the mobilization and uptake of iron from sources with low bioavailability or in high pH- induced iron deficiency conditions. Involved in the pathway of sideret [...] (361 aa)
F2P24.13Alpha/beta-Hydrolases superfamily protein. (382 aa)
CSECaffeoylshikimate esterase; Esterase involved in the biosynthesis of lignin. Hydrolyzes caffeoylshikimate into caffeate and shikimate. Together with 4- coumarate--CoA ligase (4CL), acts on an alternative reaction for the formation of caffeoyl-CoA and bypasses the second reaction of shikimate O-hydroxycinnamoyltransferase (HST). Accepts also 4-coumaroylshikimate as substrate, but with lower activity. According to and posseses monoacylglycerol O-acyltransferase, monoacylglycerol lipase and lysophospholipase activities in vitro. With the association of ACBP2, may promote the degradation o [...] (332 aa)
F6'H2Feruloyl CoA ortho-hydroxylase 2; 2-oxoglutarate (OG)- and Fe(II)-dependent dioxygenase (2OGD)involved in scopoletin biosynthesis. Converts feruloyl CoA into 6'-hydroxyferuloyl CoA but has no activity with ferulic acid, feruloylquinic acid, caffeic acid, caffeoyl CoA, p-coumaric acid, cinnamic acid, cinnamoyl CoA or benzoyl CoA. (361 aa)
F12L6.8Alpha/beta-Hydrolases superfamily protein. (317 aa)
DFRADihydroflavonol 4-reductase; Bifunctional enzyme involved in flavonoid metabolism. (382 aa)
PAL3Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. (694 aa)
PAL2Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (717 aa)
PAL1Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (725 aa)
F17A22.2Alpha/beta-Hydrolases superfamily protein. (351 aa)
CYP98A3Cytochrome P450 98A3; Cytochrome P450 which catalyzes 3'-hydroxylation of p- coumaric esters of shikimic/quinic acids to form lignin monomers. Can use p-coumarate, p-coumaraldehyde, p-coumaroyl methyl ester, 5-O-(4- coumaroyl) D-quinate and 5-O-(4-coumaroyl) shikimate as substrates, but not p-coumaryl alcohol, p-coumaroyl CoA, 1-O-p-coumaroyl-beta-D- glucose, p-hydroxy-cinnamyl alcohol, cinnamate, caffeate or ferulate. Has a weak activity on tri(p-coumaroyl)spermidine, but none on triferuloylspermidine. Hydroxylates preferentially the 5-O-isomer, but can also convert the 4-O- and 3-O-i [...] (508 aa)
F4IZK0_ARATHAlpha/beta-Hydrolases superfamily protein. (348 aa)
T21H19.40Alpha/beta-Hydrolases superfamily protein. (383 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (12%) [HD]