STRINGSTRING
ECT4 ECT4 CPSF30 CPSF30 FIO1 FIO1 ECT3 ECT3 EDM2 EDM2 MAPDA MAPDA HAKAI HAKAI ALKBH9B ALKBH9B FIP37 FIP37 ALKBH10B ALKBH10B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ECT4YTH domain-containing protein ECT4; Specifically recognizes and binds N6-methyladenosine (m6A)- containing RNAs, and regulates mRNA stability (Probable). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (Probable). Required for the correct timing of leaf formation and normal leaf morphology. (605 aa)
CPSF3030-kDa cleavage and polyadenylation specificity factor 30; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation. May interact with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition (By similarity). Mediates poly(A) site selection. Binds RNA in a calcium- dependent manner. Exhibits endonuclease activity with an ability to nick and degrade linear as well as circular single-stranded RNA that leaves RNA 3' ends with hydroxyl groups, thus mediating processing of the pre-mRNA as a pre [...] (631 aa)
FIO1U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase; Belongs to the methyltransferase superfamily. METTL16/RlmF family. (513 aa)
ECT3YTH domain-containing protein ECT3; Specifically recognizes and binds N6-methyladenosine (m6A)- containing RNAs, and regulates mRNA stability (Probable). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (Probable). Required for the correct timing of leaf formation and normal leaf morphology. Required for proper trichome branching and morphology. Functions redundantly with ECT2. (495 aa)
EDM2Protein ENHANCED DOWNY MILDEW 2; Cellular antisilencing factor and regulator of genome DNA methylation patterns involved in the regulation of chromatin states. Together with SUVH4, monitors repressive epigenetic marks H3K27me1, H3K9me2, and prevents DNA-methylation at CHG sites, affecting especially the expression of transposons and developmentally important genes. Regulates alternative RNA processing such as distal 3' polyadenylation by intronic heterochromatin. Transcription factor that binds DNA and contributes to transcriptional transposable element (TE) silencing by modulating lev [...] (1297 aa)
MAPDAN6-mAMP deaminase; Catalyzes the hydrolysis of the free cytosolic methylated adenosine nucleotide N(6)-methyl-AMP (N6-mAMP) to produce inositol monophosphate (IMP) and methylamine. Is required for the catabolism of cytosolic N6-mAMP, which is derived from the degradation of mRNA containing N6-methylated adenine (m6A). Does not possess deaminase activity toward adenosine, AMP, N6-methyladenosine, or N6-mATP in vitro. (355 aa)
HAKAIE3 ubiquitin-protein ligase HAKAI homolog; Probable E3 ubiquitin-protein ligase which is a subunit of the N6-methyltransferase complex, a multiprotein complex that mediates N6-methyladenosine (m6A) methylation at the 5'-[AG]GAC-3' consensus sites of some mRNAs. Associates with MTA, MTB, FIP37 and VIR to form the m6A writer complex which is essential for adenosine methylation at specific mRNA sequences. N6- methyladenosine (m6A) plays a role in mRNA stability, processing, translation efficiency and editing. (360 aa)
ALKBH9BRNA demethylase ALKBH9B; Dioxygenase that demethylates RNA by oxidative demethylation: specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes. Modulates viral infection of the alfalfa mosaic virus (AMV) and the m6A abundance in its genomic RNAs. (507 aa)
FIP37FKBP12-interacting protein of 37 kDa; Probable regulatory subunit of the N6-methyltransferase complex, a multiprotein complex that mediates N6-methyladenosine (m6A) methylation at the 5'-[AG]GAC-3' consensus sites of some mRNAs. Associates with MTA, MTB, VIR and HAKAI to form the m6A writer complex which is essential for adenosine methylation at specific mRNA sequences. N6- methyladenosine (m6A) plays a role in mRNA stability, processing, translation efficiency and editing. Essential protein required during endosperm development and embryogenesis. Involved in endoreduplication, especia [...] (330 aa)
ALKBH10BRNA demethylase ALKBH10B; Dioxygenase that demethylates RNA by oxidative demethylation: specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes. ALKBH10B-mediated mRNA m6A demethylation stabilizes the mRNA of the key flowering time regulators FT, SPL3 and SPL9, which are involved in the control of floral transition. (569 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (12%) [HD]