Your Input: | |||||
WRKY38 | Probable WRKY transcription factor 38; Transcription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis- acting element (By similarity). (289 aa) | ||||
NPR3 | Regulatory protein NPR3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens. (586 aa) | ||||
PIN4 | Auxin efflux carrier component 4; Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells. Maintains the endogenous auxin gradient, which is essential for correct root patterning. Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA). (616 aa) | ||||
UBC24 | Probable ubiquitin-conjugating enzyme E2 24; Accepts the ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (By similarity). Mediates PHO1 degradation through multivesicular body-mediated vacuolar proteolysis in response to inorganic phosphate (Pi) availability. Negatively regulates the protein abundance of PHF1 and PHT1s under Pi- sufficient conditions by facilitating the degradation of PHT1 proteins at the endomembrane. (907 aa) | ||||
CCD8 | Carotenoid cleavage dioxygenase 8, chloroplastic; Involved in strigolactones biosynthesis by cleaving the C(27) 9-cis-10'-apo-beta-carotenal produced by CCD7. Produces the C(19) carlactone and a C(8) hydroxyaldehyde. Also shows lower activity with all-trans-10'-apo-beta-carotenal producing a C(9) dialdehyde and the C(18) 13-apo-beta-carotenone. Strigolactones are hormones that inhibit tillering and shoot branching through the MAX-dependent pathway, contribute to the regulation of shoot architectural response to phosphate-limiting conditions and function as rhizosphere signal that stimu [...] (570 aa) | ||||
IPK1 | Inositol-pentakisphosphate 2-kinase; Phosphorylates Ins(1,3,4,5,6)P5 at position 2 to form Ins(1,2,3,4,5,6)P6 (InsP6 or phytate). Phytate is a regulator of intracellular signaling, a highly abundant animal antinutrient, and a phosphate store in plant seeds. Also phosphorylates Ins(1,3,4,6)P4 and Ins(1,4,5,6)P4 to produce Ins(1,2,3,4,6)P5 and Ins(1,2,4,5,6)P5. (451 aa) | ||||
AUX1 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa) | ||||
IPK2b | Inositol polyphosphate multikinase beta; Inositol phosphate kinase with a broad substrate specificity. Phosphorylates inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), inositol 1,4,5,6-tetrakisphosphate (Ins(1,4,5,6)P4), inositol 1,3,4,5- tetrakisphosphate (Ins(1,3,4,5)P4), inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) and inositol 1,2,3,4,6-pentakisphosphate (Ins(1,2,3,4,6)P5) but not inositol 1,4-bisphosphate (Ins(1,4)P2), inositol 1,3,4-trisphosphate (Ins(1,3,4)P3), inositol 1,2,6- trisphosphate (Ins(1,2,6)P3), inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4), inositol 1,3,4,5,6 [...] (300 aa) | ||||
TIFY10A | Protein TIFY 10A; Repressor of jasmonate responses. Jasmonoyl-isoleucine (JA- Ile) specifically promotes COI1-TIFY10A/JAZ1 interaction. Interacts with COI1 and inositol pentakisphosphate to form a high-affinity jasmonates coreceptor. (253 aa) | ||||
IPS3 | Probable inositol 3-phosphate synthase isozyme 3; Involved in myo-inositol synthesis. Belongs to the myo-inositol 1-phosphate synthase family. (510 aa) | ||||
MIK1 | MDIS1-interacting receptor like kinase 1; Involved in the regulation of procambium maintenance and polarity during vascular-tissue development. Involved in the pollen tube perception of the female signal. Phosphorylates MDSI1. (1013 aa) | ||||
NPR6 | Regulatory protein NPR6; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Acts redundantly with BOP2. BOP1/2 promote leaf and floral meristem fate and determinacy in a pathway targeting AP1 and AGL24. BOP1/2 act as transcriptional co-regulators through direct interaction with TGA factors, including PAN, a direct regulator of AP1. Controls lateral organ fate through positive regulation of adaxial-abaxial polarity genes ATHB-14/PHB [...] (467 aa) | ||||
ICS2 | Isochorismate synthase 2, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (562 aa) | ||||
VIP1-2 | Transcription factor VIP1; Transcription activator that binds specifically to the VIP1 response elements (VREs) DNA sequence 5'-ACNGCT-3' found in some stress genes (e.g. TRX8 and MYB44), when phosphorylated/activated by MPK3. Required for Agrobacterium VirE2 nuclear import and tumorigenicity. Promotes transient expression of T-DNA in early stages by interacting with VirE2 in complex with the T-DNA and facilitating its translocation to the nucleus, and mediates stable genetic transformation by Agrobacterium by binding H2A histone. Prevents cell differentiation and shoot formation. Limi [...] (341 aa) | ||||
ICS1 | Isochorismate synthase 1, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (569 aa) | ||||
EIN2 | Ethylene-insensitive protein 2; Central factor in signaling pathways regulated by ethylene (ET), and involved in various processes including development, plant defense, senescence, nucleotide sugar flux, and tropisms. Necessary for ethylene-mediated gene regulation, and for the induction of some genes by ozone. Acts downstream of ET receptors, and upstream of ethylene regulated transcription factors. Required for cytokinin-mediated processes. Seems to be implicated in cross-talk between ET, jasmonate and other pathways. Probably not involved in iron uptake. Has a short half-life and un [...] (1294 aa) | ||||
ITPK1 | Inositol-tetrakisphosphate 1-kinase 1; Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3. Phosphorylates Ins(3,4,5,6)P4 at position 1 to form Ins(1,3,4,5,6)P5. This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not (By similarity). Also phosphorylates Ins(1,3,4)P3 on O-5 and O-6 to form Ins(1,3,4,6)P4, an essential molecule in the hexakisphosphate (InsP6) pathway ; Belongs to the ITPK1 family. (319 aa) | ||||
PAP15 | Purple acid phosphatase 15; Acid phosphatase activity with p-nitrophenyl phosphate (pNPP), D-myoinositol 1-phosphate (Ins(1)P1), phytic acid and Myo- inositol hexakisphosphate. Low or no activity with Glc-6-P and ATP. Confers shoot growth stimulation, enhanced salt and osmotic stress tolerance, and ABA insensitivity. May modulate ascorbic acid (AsA) levels by controlling the input of myoinositol into this branch of AsA biosynthesis. (532 aa) | ||||
EBF1 | EIN3-binding F-box protein 1; Component of SCF(EBF1) E3 ubiquitin ligase complexes, which may mediate the ubiquitination and subsequent proteasomal degradation of target proteins (probably including EIN3 and EIL1). Regulator of the ethylene signaling cascade by modulating the stability of EIN3 and EIL1 proteins. Confers insensitivity to ethylene. (628 aa) | ||||
EDS1 | Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] (623 aa) | ||||
ITPK3 | Inositol-tetrakisphosphate 1-kinase 3; Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3. Phosphorylates Ins(3,4,5,6)P4 to form InsP5. This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not (By similarity). Also phosphorylates Ins(1,3,4)P3 or a racemic mixture of Ins(1,4,6)P3 and Ins(3,4,6)P3 to form InsP4. Ins(1,3,4,6)P4 is an essential molecule in the hexakisphosphate (InsP6) pathway (By similarity). (353 aa) | ||||
NPR2 | Regulatory protein NPR2; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. (600 aa) | ||||
NPR5 | Regulatory protein NPR5; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Acts redundantly with BOP2. BOP1/2 promote leaf and floral meristem fate and determinacy in a pathway targeting AP1 and AGL24. BOP1/2 act as transcriptional co-regulators through direct interaction with TGA factors, including PAN, a direct regulator of AP1. Controls lateral organ fate through positive regulation of adaxial-abaxial polarity genes ATHB-14/PHB [...] (491 aa) | ||||
VIP1 | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase VIP1; Bifunctional inositol kinase that acts in concert with the IP6K kinases to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis- diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2- InsP4, also respectively called InsP7 and InsP8, may regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, and exocytosis. Phosphorylates inositol hexakisphosphate (InsP6) at positions 1 or 3 [...] (1050 aa) | ||||
SNC1 | Protein SUPPRESSOR OF npr1-1, CONSTITUTIVE 1; Disease resistance protein of the TIR-NB-LRR-type. Part of the RPP5 locus that contains a cluster of several paralogous disease resistance (R) genes. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth. Probably acts as a NAD(+) hydrolase (NADase): in response to activation, catalyzes cleavage of NAD(+) into ADP-D- ribose (ADPR) an [...] (1437 aa) | ||||
CYP83B1 | Cytochrome P450 83B1; Involved in the metabolism of aromatic oximes. Catalyzes the oxime metabolizing step in indole glucosinolate biosynthesis by converting indole-3-acetaldoxime into indole-3-S-alkyl-thiohydroximate. Probably required for glucosinolate activation in response to pathogens. Functions in auxin homeostasis because indole-3-acetaldoxime also serves as a precursor for auxin biosynthesis. Specifically metabolizes (E)-p-hydroxyphenylacetaldoxime into an S-alkyl- thiohydroximate. (499 aa) | ||||
ITPK4 | Inositol 1,3,4-trisphosphate 5/6-kinase 4; Kinase that can phosphorylate the inositol polyphosphate Ins(1,3,4)P3 to form InsP4. Also phosphorylates a racemic mixture of Ins(1,4,6)P3 and Ins(3,4,6)P3 to form InsP4. Does not display inositol 3,4,5,6-tetrakisphosphate 1-kinase activity, but possesses inositol 1,4,5,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate isomerase activity. Ins(1,3,4,6)P4 is an essential molecule in the hexakisphosphate (InsP6) pathway (By similarity). (488 aa) | ||||
ITPK2 | Inositol-tetrakisphosphate 1-kinase 2; Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3. Phosphorylates Ins(3,4,5,6)P4 to form InsP5. This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not (By similarity). Also phosphorylates Ins(1,3,4)P3 or a racemic mixture of Ins(1,4,6)P3 and Ins(3,4,6)P3 to form InsP4. Ins(1,3,4,6)P4 is an essential molecule in the hexakisphosphate (InsP6) pathway (By similarity). Plays a role in [...] (391 aa) | ||||
PHYA | Phytochrome A; Regulatory photoreceptor which exists in two forms that are reversibly interconvertible by light: the Pr form that absorbs maximally in the red region of the spectrum and the Pfr form that absorbs maximally in the far-red region. Photoconversion of Pr to Pfr induces an array of morphogenetic responses, whereas reconversion of Pfr to Pr cancels the induction of those responses. Pfr controls the expression of a number of nuclear genes including those encoding the small subunit of ribulose-bisphosphate carboxylase, chlorophyll A/B binding protein, protochlorophyllide reduct [...] (1122 aa) | ||||
HEL | Hevein-like preproprotein; Fungal growth inhibitors. Neither CB-HEL nor CD-HEL have chitinase activity, but both have antimicrobial activities. CD-HEL has RNase, but no DNase activity. (212 aa) | ||||
NPR1 | Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa) | ||||
IAA7 | Auxin-responsive protein IAA7; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression. (243 aa) | ||||
IPS2 | Inositol-3-phosphate synthase isozyme 2; Involved in myo-inositol synthesis. (510 aa) | ||||
MYC2 | Transcription factor MYC2; Transcriptional activator. Common transcription factor of light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. With MYC3 and MYC4, controls additively subsets of JA-dependent responses. In cooperation with MYB2 is involved in the regulation of ABA-inducible genes under drought stress conditions. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the MYC recognition site (5'-CACATG-3'), and to the G-box (5'-CACNTG-3') and Z-box (5'-ATACGTGT-3') of promoters. Binds directly to the prom [...] (623 aa) | ||||
TIR1 | Protein TRANSPORT INHIBITOR RESPONSE 1; Auxin receptor that mediates Aux/IAA proteins proteasomal degradation and auxin-regulated transcription. The SCF(TIR1) E3 ubiquitin ligase complex is involved in auxin-mediated signaling pathway that regulate root and hypocotyl growth, lateral root formation, cell elongation, and gravitropism. Appears to allow pericycle cells to overcome G2 arrest prior to lateral root development. Plays a role in ethylene signaling in roots. Confers sensitivity to the virulent bacterial pathogen P.syringae. (594 aa) | ||||
NPR4 | Regulatory protein NPR4; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens, and may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways. (574 aa) | ||||
ABCC5 | ABC transporter C family member 5; Pump for glutathione S-conjugates. Involved in regulation of K(+) and Na(+) cell content. Mediates resistance to NaCl and Li(+), confers sensitivity to sulfonylurea drugs such as glibenclamide (inducer of stomatal opening), and required for stomatal opening regulation by auxin, abscisic acid (ABA) and external Ca(2+). Transports oestradiol-17-(beta-D-glucuronide) (E(2)17G). Involved in the root auxin content regulation that controls the transition from primary root elongation to lateral root formation. Plays a role in ABA- mediated germination inhibit [...] (1514 aa) | ||||
VIP2-2 | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase VIP2; Bifunctional inositol kinase that acts in concert with the IP6K kinases to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis- diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2- InsP4, also respectively called InsP7 and InsP8, may regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, and exocytosis. Phosphorylates inositol hexakisphosphate (InsP6) at positions 1 or 3 [...] (1049 aa) | ||||
PHL1 | Protein PHR1-LIKE 1; Transcription factor acting as central integrator of phosphate starvation responses. Regulates FER1 expression upon phosphate starvation, linking iron and phosphate homeostasis ; Belongs to the MYB-CC family. (413 aa) |