STRINGSTRING
LACS6 LACS6 LACS5 LACS5 LACS8 LACS8 ACO3 ACO3 CSY2 CSY2 AAE16 AAE16 PEX5 PEX5 LACS9 LACS9 LACS3 LACS3 ACO2-2 ACO2-2 A0A1P8B2A8 A0A1P8B2A8 AOX2 AOX2 LACS1 LACS1 ICL ICL NIT2 NIT2 ACO1 ACO1 LACS7 LACS7 AAE15 AAE15 LACS2 LACS2 PEX7 PEX7 LACS4 LACS4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
LACS6Long chain acyl-CoA synthetase 6, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Might play a regulatory role both in fatty acid import into glyoxysomes and in fatty acid beta-oxidation. Displays redundant function with LACS7 into the seed development process. (701 aa)
LACS5Long chain acyl-CoA synthetase 5; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (666 aa)
LACS8Long chain acyl-CoA synthetase 8; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (720 aa)
ACO3Aconitate hydratase 3, mitochondrial; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. Modulates cytosolic citrate metabolism during lipid mobilization. Required during seedling growth. Belongs to the aconitase/IPM isomerase family. (990 aa)
CSY2Citrate synthase 2, peroxisomal; Peroxisomal citrate synthase required for the fatty acid respiration in seedlings, citrate being exported from peroxisomes into mitochondria during respiration of triacylglycerol (TAG). Indeed, complete respiration requires the transfer of carbon in the form of citrate from the peroxisome to the mitochondria. (514 aa)
AAE16Probable acyl-activating enzyme 16, chloroplastic; May be involved in the activation of fatty acids to acyl- carrier-protein; Belongs to the ATP-dependent AMP-binding enzyme family. (722 aa)
PEX5Peroxisome biogenesis protein 5; Import receptor for peroxisomal-targeting signal one (PTS1). A receptor-cargo complex composed of PEX5, PEX7, a PTS1-containing protein and a PTS2-containing protein is targeted to peroxisomes during import. Necessary for the developmental elimination of obsolete peroxisome matrix proteins. (728 aa)
LACS9Long chain acyl-CoA synthetase 9, chloroplastic; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate. (691 aa)
LACS3Long chain acyl-CoA synthetase 3; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (665 aa)
ACO2-2Aconitate hydratase 2, mitochondrial; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. Involved in acetate assimilation. (995 aa)
A0A1P8B2A8Long chain acyl-CoA synthetase. (130 aa)
AOX2Ubiquinol oxidase 2, mitochondrial; Catalyzes the cyanide-resistant oxidation of ubiquinol and the reduction of molecular oxygen to water, but does not translocate protons and consequently is not linked to oxidative phosphorylation. May increase respiration when the cytochrome respiratory pathway is restricted, or in response to low temperatures (By similarity). Belongs to the alternative oxidase family. (353 aa)
LACS1Long chain acyl-CoA synthetase 1; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Acts in both the wax and cutin pathways. Preferentially uses palmitate, palmitoleate, linoleate and eicosenoate. Seems to have a specific activity against very long-chain fatty acid (VLCFA) class with acids longer than 24 carbons (C(24)). (660 aa)
ICLIsocitrate lyase; Involved in storage lipid mobilization during the growth of higher plant seedling; Belongs to the isocitrate lyase/PEP mutase superfamily. Isocitrate lyase family. (576 aa)
NIT2Nitrilase 2; Can convert indole-3-acetonitrile to the plant hormone indole-3-acetic acid. (339 aa)
ACO1Aconitate hydratase 1; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. Contributes to oxidative stress tolerance. May have a role in respiration. Belongs to the aconitase/IPM isomerase family. (898 aa)
LACS7Long chain acyl-CoA synthetase 7, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Displays redundant function with LACS7 into the seed development process (By similarity). (700 aa)
AAE15Long-chain-fatty-acid--[acyl-carrier-protein] ligase AEE15, chloroplastic; Probably involved in the activation of fatty acids to acyl- carrier-protein prior to fatty acid elongation in plastids. Acts on medium- to long-chain fatty acids. (727 aa)
LACS2Long chain acyl-CoA synthetase 2; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Acts in the cutin pathway. Preferentially uses palmitate, palmitoleate, oleate and linoleate. Required for repression of lateral root formation through its role in cutin biosynthesis and subsequent aerial tissues permeability. Belongs to the ATP-dependent AMP-binding enzyme family. (665 aa)
PEX7Peroxisome biogenesis protein 7; Import receptor for peroxisomal-targeting signal two (PTS2). A receptor-cargo complex composed of PEX5, PEX7, a PTS1-containing protein and a PTS2-containing protein is targeted to peroxisomes during import. Belongs to the WD repeat peroxin-7 family. (317 aa)
LACS4Long chain acyl-CoA synthetase 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (666 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (16%) [HD]