STRINGSTRING
DFRA DFRA FLS5 FLS5 FLS3 FLS3 TT8 TT8 F3H F3H MYB57 MYB57 TTG1 TTG1 FLS6 FLS6 FLS4 FLS4 F6H11.100 F6H11.100 ACT7 ACT7 Atmyb2 Atmyb2 MYB1 MYB1 LDOX LDOX FLS1 FLS1 MYBL2 MYBL2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
DFRADihydroflavonol 4-reductase; Bifunctional enzyme involved in flavonoid metabolism. (382 aa)
FLS5Probable flavonol synthase 5; Belongs to the iron/ascorbate-dependent oxidoreductase family. (325 aa)
FLS3Flavonol synthase 3; Catalyzes the formation of flavonols from dihydroflavonols. Possesses low activity in vitro towards dihydrokaempferol and dihydroquercetin producing kaempferol and quercitin, respectively. Belongs to the iron/ascorbate-dependent oxidoreductase family. (308 aa)
TT8Transcription factor TT8; Transcription activator, when associated with MYB75/PAP1 or MYB90/PAP2. Involved in the control of flavonoid pigmentation. Plays a key role in regulating leucoanthocyanidin reductase (BANYULS) and dihydroflavonol-4-reductase (DFR). Not required for leucoanthocyanidin dioxygenase (LDOX) expression. (518 aa)
F3HNaringenin,2-oxoglutarate 3-dioxygenase; Catalyzes the 3-beta-hydroxylation of 2S-flavanones to 2R,3R- dihydroflavonols which are intermediates in the biosynthesis of flavonols, anthocyanidins, catechins and proanthocyanidins in plants. (358 aa)
MYB57Transcription factor MYB57; Transcription factor acting redundantly with MYB21 and MYB24 to control stamen filament elongation in the late developed flowers. Repressed at the transcript levels by DELLA proteins. (206 aa)
TTG1Protein TRANSPARENT TESTA GLABRA 1; May regulate MYC transcription factors. Involved in epidermal cell fate specification such as trichome and root hair development, seed mucilage production, and anthocyanin biosynthesis by acting at the dihydroflavonol-4-reductase (DFR) step. Together with GL1 and GL3, promotes trichome formation. Activates the transcription of GL2. (341 aa)
FLS6Probable flavonol synthase 6. (293 aa)
FLS4Probable flavonol synthase 4. (279 aa)
F6H11.100Transcription factor-like protein. (374 aa)
ACT7Actin-7; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. Essential component of cell cytoskeleton; plays an important role in cytoplasmic streaming, cell shape determination, cell division, organelle movement and extension growth. This is considered as one of the vegetative actins which is involved in the regulation of hormone-induced plant cell proliferation and callus formation. (377 aa)
Atmyb2MYB transcription factor (Atmyb2). (273 aa)
MYB1Transcription factor MYB1. (393 aa)
LDOXLeucoanthocyanidin dioxygenase; Involved in anthocyanin and protoanthocyanidin biosynthesis by catalyzing the oxidation of leucoanthocyanidins into anthocyanidins. Possesses low flavonol synthase activity in vitro towards dihydrokaempferol and dihydroquercetin producing kaempferol and quercitin, respectively. Belongs to the iron/ascorbate-dependent oxidoreductase family. (356 aa)
FLS1Flavonol synthase/flavanone 3-hydroxylase; Catalyzes the formation of flavonols from dihydroflavonols. It can act on dihydrokaempferol to produce kaempferol, on dihydroquercetin to produce quercitin and on dihydromyricetin to produce myricetin. In vitro catalyzes the oxidation of both enantiomers of naringenin to give both cis- and trans-dihydrokaempferol. Belongs to the iron/ascorbate-dependent oxidoreductase family. (336 aa)
MYBL2Putative transcription factor; 20982-20139. (195 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (22%) [HD]