STRINGSTRING
ccmFC ccmFC nad4 nad4 rpl2 rpl2 matR matR TMN5 TMN5 ND2 ND2 ND5 ND5 RPL8A RPL8A rpl2-A rpl2-A ND1 ND1 COX2 COX2 CCMFC CCMFC NAD7 NAD7 RPL2 RPL2 ND4 ND4 PER53 PER53 TMN1 TMN1 NAD9 NAD9 MTERF15 MTERF15 NMAT1 NMAT1 NMAT4 NMAT4 ABO6 ABO6 UPF1 UPF1 NMAT2 NMAT2 MSJ1.11 MSJ1.11 RAD52-1 RAD52-1 SMR1 SMR1 CFM9 CFM9 RH53 RH53 RH9 RH9 NMAT3 NMAT3 OTP43 OTP43 nad7 nad7 nad1 nad1 nad5 nad5 nad2 nad2 cox2 cox2 nad9 nad9
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ccmFCCytochrome c biogenesis FC. (442 aa)
nad4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (495 aa)
rpl2Ribosomal protein L2. (349 aa)
matRMaturase. (656 aa)
TMN5Transmembrane 9 superfamily member 5. (589 aa)
ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (499 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (669 aa)
RPL8A60S ribosomal protein L8-1. (258 aa)
rpl2-A50S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (274 aa)
ND1NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (325 aa)
COX2Cytochrome c oxidase subunit 2; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (260 aa)
CCMFCCytochrome c biogenesis CcmF C-terminal-like mitochondrial protein; Forms a complex with CCMFN1, CCMFN2 and CCMH that performs the assembly of heme with c-type apocytochromes in mitochondria. Belongs to the CcmF/CycK/Ccl1/NrfE/CcsA family. (442 aa)
NAD7NADH dehydrogenase [ubiquinone] iron-sulfur protein 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Component of the iron-sulfur (IP) fragment of the enzyme. (394 aa)
RPL260S ribosomal protein L2, mitochondrial; Belongs to the universal ribosomal protein uL2 family. (349 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (495 aa)
PER53Peroxidase 53; Removal of H(2)O(2), oxidation of toxic reductants, biosynthesis and degradation of lignin, suberization, auxin catabolism, response to environmental stresses such as wounding, pathogen attack and oxidative stress. These functions might be dependent on each isozyme/isoform in each plant tissue; Belongs to the peroxidase family. Classical plant (class III) peroxidase subfamily. (335 aa)
TMN1Transmembrane 9 superfamily member 1. (589 aa)
NAD9NADH dehydrogenase [ubiquinone] iron-sulfur protein 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (190 aa)
MTERF15Transcription termination factor MTERF15, mitochondrial; Transcription termination factor required for mitochondrial NAD2 intron 3 splicing and normal membrane respiratory chain Complex I activity. Essential for normal plant growth and development. Binds to RNA but not to double-stranded DNA. (445 aa)
NMAT1Nuclear intron maturase 1, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Necessary for mitochondrial biogenesis during early developmental stages. Involved in the splicing of mitochondrial NAD4 transcripts. Required for trans-splicing of NAD1 intron 1 and also functions in cis-splicing of NAD2 intron 1 and NAD4 intron 2. Required for the regulation of fundamental metabolic pathways such as amino acid metabolism, triacylglycerol degradation and polysaccharide synthesis (cellulose and starch) during the early stage of plant growth. Imp [...] (711 aa)
NMAT4Nuclear intron maturase 4, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Involved in NAD1 pre-mRNA processing and maturation of introns 1, 3 and 4. Necessary for mitochondrial biogenesis during early developmental stages. Essential for respiratory holocomplex I biogenesis in mitochondria. (798 aa)
ABO6ATP-dependent RNA helicase A-like protein. (1161 aa)
UPF1Regulator of nonsense transcripts 1 homolog; Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (premature termination codon PTC) by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Eliminates the production of nonsense-containing RNAs (ncRNAs). Required for plant development and adaptation to environmental stresses, including plant defense and response to wounding. Belongs to the DNA2/NAM7 helicase family. (1254 aa)
NMAT2Nuclear intron maturase 2, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Involved in the splicing of mitochondrial COX2, NAD1 and NAD7 transcripts. Necessary for mitochondrial biogenesis during early developmental stages. (735 aa)
MSJ1.11Nuclear protein-like. (1269 aa)
RAD52-1DNA repair RAD52-like protein 1, mitochondrial; Plant-specific single-stranded DNA-binding protein required for efficient heterologous recombination-dependent DNA repair in nuclear and mitochondrial compartments. Forms large nucleo-protein complexes with WHY2 in mitochondria. Binds ssDNA with high affinity, but with little sequence specificity. Involved in double-stranded DNA break repair. Involved in the hydrolytic splicing pathway in mitochondrion. Facilitates the excision of two cis-spliced group II introns, NAD1 intron 2 and NAD2 intron 1 ; Belongs to the RAD52 family. (176 aa)
SMR1Cyclin-dependent protein kinase inhibitor SMR1; Probable cyclin-dependent protein kinase (CDK) inhibitor that functions as a repressor of mitosis in the endoreduplication cell cycle. Cooperates with SIM and SMR2 to promote endoreplication during leaf development. Specifically regulates endoreduplication in epidermal pavement cells to produce the cell size pattern. Is necessary for giant cell formation. Positive regulator of effector- triggered immunity (ETI). (128 aa)
CFM9CRM-domain containing factor CFM9, mitochondrial; Involved in the splicing of group II introns in mitochondria. Required for the splicing of mitochondrial introns found in nad1, nad2, nad4, nad5, nad7, rps3 and cox2 genes. Splicing of mitochondrial introns is crucial for mitochondrial biogenesis and function, plant growth and development, and plant response to abiotic stresses. (491 aa)
RH53DEAD-box ATP-dependent RNA helicase 53, mitochondrial. (616 aa)
RH9DEAD-box ATP-dependent RNA helicase 9, mitochondrial. (610 aa)
NMAT3Nuclear intron maturase 3, mitochondrial; Nuclear-encoded maturase required for splicing of group-II introns in mitochondria. Necessary for mitochondrial biogenesis during early developmental stages; Belongs to the plant nuclear intron maturase (nMat) family. (723 aa)
OTP43Pentatricopeptide repeat-containing protein At1g74900, mitochondrial; Required for the trans-splicing of intron 1 of the mitochondrial nad1 transcript encoding the ND1 subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). (482 aa)
nad7NADH dehydrogenase subunit 7; Belongs to the complex I 49 kDa subunit family. (394 aa)
nad1NADH-ubiquinone oxidoreductase chain 1; Belongs to the complex I subunit 1 family. (325 aa)
nad5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (669 aa)
nad2NADH dehydrogenase subunit 2. (488 aa)
cox2Cytochrome c oxidase subunit 2; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. (260 aa)
nad9NADH dehydrogenase subunit 9; Belongs to the complex I 30 kDa subunit family. (190 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (28%) [HD]