Your Input: | |||||
GH3.3 | Indole-3-acetic acid-amido synthetase GH3.3; Catalyzes the synthesis of indole-3-acetic acid (IAA)-amino acid conjugates, providing a mechanism for the plant to cope with the presence of excess auxin. Strongly reactive with Glu, Gln, Trp, Asp, Ala, Leu, Phe, Gly, Tyr, Met, Ile and Val. Little or no product formation with His, Ser, Thr, Arg, Lys, or Cys. Also active on pyruvic and butyric acid analogs of IAA, PAA and the synthetic auxin naphthaleneacetic acid (NAA). The two chlorinated synthetic auxin herbicides 2,4-D and 3,6-dichloro-o-anisic acid (dicamba) cannot be used as substrates [...] (595 aa) | ||||
YUC9 | Probable indole-3-pyruvate monooxygenase YUCCA9; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (421 aa) | ||||
HTR4 | Histone H3.3; Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in [...] (136 aa) | ||||
HTR2 | Histone H3.2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa) | ||||
IAA3 | Auxin-responsive protein IAA3; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin- responsive promoter element (AuxRE). Plays a central role in auxin regulation of root growth, in gravitropism, and in lateral root formation. Regulated by an auxin-induced protein turnover. Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response gene [...] (189 aa) | ||||
RHIP1 | RGS1-HXK1-interacting protein 1; Required for some glucose-regulated gene expression, being a physical connection between RGS1 and HXK1 in sugar signaling. Prevents roots and inflorecences growth. (263 aa) | ||||
HTR12 | Histone H3-like centromeric protein HTR12; Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division (By similarity). (178 aa) | ||||
PIN4 | Auxin efflux carrier component 4; Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells. Maintains the endogenous auxin gradient, which is essential for correct root patterning. Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA). (616 aa) | ||||
PIN7 | Auxin efflux carrier component 7; Acts as a component of the auxin efflux carrier. Mediates the initial auxin gradient which contributes to the establishment of the apical-basal axis in early embryogenesis. (619 aa) | ||||
AUX1 | Auxin transporter protein 1; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular localization of AUX1 is regula [...] (485 aa) | ||||
HAG1 | Histone acetyltransferase GCN5; Acetylates histone H3 and ADA2 proteins in vitro. Acetylates 'Lys-14' of histone H3. Acetylation of histones gives a specific tag for epigenetic transcription activation. Operates in concert with certain DNA-binding transcriptional activators. Acts via the formation of large multiprotein complexes that modify the chromatin (By similarity). Belongs to the acetyltransferase family. GCN5 subfamily. (568 aa) | ||||
ADA2B | Transcriptional adapter ADA2b; Required for the function of some acidic activation domains, which activate transcription from a distant site. The exact mechanism of action is not yet known (By similarity). ADA2 stimulates the acetyltransferase activity of GCN5 on free histones or nucleosomes, probably by opening up the promoter region. Mediates auxin and cytokinin signals in the control of cell proliferation and might be involved in repression of a freezing tolerance pathway at warm temperature. Involved in the positive regulation of salt-induced gene expression by maintaining locus-sp [...] (487 aa) | ||||
PIN5 | Auxin efflux carrier component 5; Auxin transporter regulating intracellular auxin homeostasis and metabolism. Mediates the auxin transport from the cytosol into the lumen of the endoplasmic reticulum. May also act as an auxin efflux carrier when located to the cell membrane. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in unfolded protein response (UPR) activation. Involved in the control of vein patterning. Promotes vein formation. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (351 aa) | ||||
HTR11 | Histone H3-like 5; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (139 aa) | ||||
T6J4.12 | Histone H3-like 1; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (136 aa) | ||||
MGH3 | Histone H3-like 2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (137 aa) | ||||
PIN8 | Auxin efflux carrier component 8; Component of the intracellular auxin-transport pathway in the male gametophyte. Involved in the regulation of auxin homeostasis in pollen. Involved in the efflux of auxin from the endoplasmic reticulum into the cytoplasm. PIN5 and PIN8 may have an antagonistic/compensatory activity. Involved in the control of vein patterning. Redundantly with PIN6, inhibits the vein-formation- promoting functions of PIN5. PIN5, PIN6, and PIN8 control vein network geometry, but they are expressed in mutually exclusive domains of leaf vascular cells. (367 aa) | ||||
YUC5 | Probable indole-3-pyruvate monooxygenase YUCCA5; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (424 aa) | ||||
F10A5.19 | Histone H3-like 3; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (136 aa) | ||||
PIN2 | Auxin efflux carrier component 2; Acts as a component of the auxin efflux carrier. Seems to be involved in the root-specific auxin transport, and mediates the root gravitropism. Its particular localization suggest a role in the translocation of auxin towards the elongation zone. (647 aa) | ||||
T24H18.80 | Histone H3-like 4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (131 aa) | ||||
TAA1 | L-tryptophan--pyruvate aminotransferase 1; L-tryptophan aminotransferase involved in auxin (IAA) biosynthesis. Can convert L-tryptophan and pyruvate to indole-3-pyruvic acid (IPA) and alanine. Catalyzes the first step in IPA branch of the auxin biosynthetic pathway. Required for auxin production to initiate multiple change in growth in response to environmental and developmental cues. It is also active with phenylalanine, tyrosine, leucine, alanine, methionine and glutamine. Both TAA1 and TAR2 are required for maintaining proper auxin levels in roots, while TAA1, TAR1 and TAR2 are requ [...] (391 aa) | ||||
PIN3 | Auxin efflux carrier component 3; Acts as a component of the auxin efflux carrier. Seems to be involved in the lateral auxin transport system and mediates tropic growth. Coordinated polar localization of PIN3 is directly regulated by the vesicle trafficking process. (640 aa) | ||||
ADA2A | Transcriptional adapter ADA2a; Required for the function of some acidic activation domains, which activate transcription from a distant site. The exact mechanism of action is not yet known (By similarity). ADA2 stimulates the acetyltransferase activity of GCN5 on free histones or nucleosomes, probably by opening up the promoter region. (548 aa) | ||||
YUC8 | Probable indole-3-pyruvate monooxygenase YUCCA8; Involved in auxin biosynthesis. Belongs to the set of redundant YUCCA genes probably responsible for auxin biosynthesis in roots. (426 aa) |