STRINGSTRING
LACS7 LACS7 MLO7 MLO7 LACS1 LACS1 LACS6 LACS6 LACS3 LACS3 LACS9 LACS9 PPA6 PPA6 LACS8 LACS8 LACS4 LACS4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
LACS7Long chain acyl-CoA synthetase 7, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Displays redundant function with LACS7 into the seed development process (By similarity). (700 aa)
MLO7MLO-like protein 7; May be involved in modulation of pathogen defense and leaf cell death. Activity seems to be regulated by Ca(2+)-dependent calmodulin binding and seems not to require heterotrimeric G proteins (By similarity). Controls pollen tube reception in the female gametophyte synergids. (542 aa)
LACS1Long chain acyl-CoA synthetase 1; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Acts in both the wax and cutin pathways. Preferentially uses palmitate, palmitoleate, linoleate and eicosenoate. Seems to have a specific activity against very long-chain fatty acid (VLCFA) class with acids longer than 24 carbons (C(24)). (660 aa)
LACS6Long chain acyl-CoA synthetase 6, peroxisomal; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate, linoleate and eicosenoate. Might play a regulatory role both in fatty acid import into glyoxysomes and in fatty acid beta-oxidation. Displays redundant function with LACS7 into the seed development process. (701 aa)
LACS3Long chain acyl-CoA synthetase 3; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (665 aa)
LACS9Long chain acyl-CoA synthetase 9, chloroplastic; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate. (691 aa)
PPA6Soluble inorganic pyrophosphatase 6, chloroplastic; Belongs to the PPase family. (300 aa)
LACS8Long chain acyl-CoA synthetase 8; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (720 aa)
LACS4Long chain acyl-CoA synthetase 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitate, palmitoleate, oleate and linoleate; Belongs to the ATP-dependent AMP-binding enzyme family. (666 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (12%) [HD]