STRINGSTRING
PAL1 PAL1 F20O9.90 F20O9.90 AS1 AS1 TGA2 TGA2 PAL2 PAL2 PAL3 PAL3 CYP73A5 CYP73A5 NPR1 NPR1 NPR4 NPR4 F20O9.100 F20O9.100 NPR3 NPR3 F9D16.60 F9D16.60 BZIP8 BZIP8 TAT7 TAT7 TAT TAT TAT3 TAT3 PAL4 PAL4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PAL1Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (725 aa)
F20O9.90Tyrosine transaminase family protein. (447 aa)
AS1Transcription factor AS1; Transcription factor required for normal cell differentiation. Positively regulates LATERAL ORGAN BOUNDARIES (LOB) within the shoot apex, and the class III HD-ZIP genes REV, PHB, and PHV. Interacts directly with ASYMMETRIC LEAVES 2 (LBD6/AS2) to repress the knox homeobox genes BP/KNAT1, KNAT2, and KNAT6 and the abaxial determinants ARF3/ETT, KAN2 and YAB5. May act in parallel with the RDR6-SGS3-AGO7 pathway, an endogenous RNA silencing pathway, to regulate the leaf morphogenesis. Binds directly to KNAT1, KNAT2, and KNATM chromatin, regulating leaf development. [...] (367 aa)
TGA2Transcription factor TGA2; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. Required to induce the systemic acquired resistance (SAR) via the regulation of pathogenesis-related genes expression. Binding to the as- 1 element of PR-1 promoter is salicylic acid-inducible and mediated by NPR1. Could also bind to the C-boxes (5'-ATGACGTCAT-3') with high affinity. (330 aa)
PAL2Phenylalanine ammonia-lyase 2; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (717 aa)
PAL3Phenylalanine ammonia-lyase 3; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton. (694 aa)
CYP73A5Trans-cinnamate 4-monooxygenase; Controls carbon flux to pigments essential for pollination or UV protection, to numerous pytoalexins synthesized by plants when challenged by pathogens, and to lignins. (505 aa)
NPR1Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa)
NPR4Regulatory protein NPR4; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens, and may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways. (574 aa)
F20O9.100Probable aminotransferase TAT1; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (449 aa)
NPR3Regulatory protein NPR3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens. (586 aa)
F9D16.60Probable aminotransferase TAT4. (424 aa)
BZIP8Basic leucine zipper 8; Belongs to the bZIP family. (138 aa)
TAT7Probable aminotransferase TAT2; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (414 aa)
TATTyrosine aminotransferase; Transaminase involved in tyrosine breakdown. Converts tyrosine to p-hydroxyphenylpyruvate. Can catalyze the reverse reaction, using L-glutamate in vitro. Can convert phenylalanine to phenylpyruvate and catalyze the reverse reaction in vitro. Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (420 aa)
TAT3Probable aminotransferase TAT3; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (445 aa)
PAL4Phenylalanine ammonia-lyase 4; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (707 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (14%) [HD]