STRINGSTRING
ERL1 ERL1 ASK7 ASK7 FAMA FAMA BASL BASL SPCH SPCH EPF2 EPF2 EPF1 EPF1 MUTE MUTE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ERL1LRR receptor-like serine/threonine-protein kinase ERL1; Receptor kinase that regulates inflorescence architecture and organ shape as well as stomatal patterning, including density and clustering, together with ER and ERL2. Redundantly involved with ER in procambial development regulation. Forms a functional ligand-receptor pair with EPF1 (AC Q8S8I4). Forms a constitutive complex with TMM involved in the recognition of the stomatal regulatory peptides EPF1, EPF2 and EPFL9/STOMAGEN. Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. (966 aa)
ASK7Shaggy-related protein kinase eta; Negative regulator in brassinosteroid signal transduction pathway important for plant growth. May be also involved in auxin signaling pathway. Phosphorylates and increases the degradation of BZR1 and BZR2/BES1 by the proteasome. Phosphorylates BHLH150, beet curly top virus C4 and tomato golden mosaic virus AC4 on threonine and serine residues. Upon brassinosteroid signaling, inhibits stomatal development by phosphorylating and inhibiting the MAPKK kinase YDA and the MAPK kinases MKK4 and MKK5. Phosphorylates BSK1, BSK3, BSK5, BSK6, BSK8 AND BSK11 in v [...] (380 aa)
FAMATranscription factor FAMA; Transcription activator. Together with MYB88 and MYB124, ensures that stomata contain just two guard cells (GCs) by enforcing a single symmetric precursor cell division before stomatal maturity. Together with SPCH and MUTE, regulates the stomata formation. Required to promote differentiation and morphogenesis of stomatal guard cells and to halt proliferative divisions in their immediate precursors. Mediates the formation of stomata. Prevents histone H3K27me3 marks and derepresses stem cell gene expression. (414 aa)
BASLProtein BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE; Regulates asymmetric cell division (ACD), especially in stomatal-lineage cells, probably by modulating accumulation and subcellular polarization of POLAR and SPCH. Mediates an attenuation of MAPK signaling upon polarization of POLAR and ASK7/BIN2 in stomatal lineage ground cells (SLGCs) undergoing ACD, and relieves BIN2 inhibition of SPCH in the nucleus. When phosphorylated, functions as a scaffold and recruits the MAPKKK YODA, MPK3 and MPK6 to spatially reorganize the MAPK signaling pathway at the cortex of cells undergoing ACD. C [...] (262 aa)
SPCHTranscription factor SPEECHLESS; Transcription factor acting as an integration node for stomata and brassinosteroid (BR) signaling pathways to control stomatal initiation and development. Activates transcription when in the presence of SCRM/ICE1. Functions as a dimer with SCRM or SCRM2 during stomatal initiation. Required for the initiation, the spacing and the formation of stomata, by promoting the first asymmetric cell divisions. Together with FMA and MUTE, modulates the stomata formation. Involved in the regulation of growth reduction under osmotic stress (e.g. mannitol), associated [...] (364 aa)
EPF2Protein EPIDERMAL PATTERNING FACTOR 2; Controls stomatal patterning. Regulates the number of cells that enter, and remain in, the stomatal lineage by inhibiting protodermal cells from adopting the meristemoid mother cell (MMC) fate in a non-cell-autonomous manner. Mediates stomatal development inhibition. MEPF2: mobile signal controlling stomatal development in a non-cell-autonomous manner. Uses ERECTA as major receptor. Inactivated by cleavage by CRSP (AC Q9LNU1). May act by competing with somatogen (AC Q9SV72) for the same receptor, TMM (AC Q9SSD1). (120 aa)
EPF1Protein EPIDERMAL PATTERNING FACTOR 1; Controls stomatal patterning. Regulates asymmetric cell division during guard cell differentiation. Mediates stomatal development inhibition. Not cleaved by the protease CRSP (AC Q9LNU1). MEPF1: mobile signal controlling stomatal development in a non-cell-autonomous manner. Uses ERL1 as major receptor. May act by competing with somatogen (AC Q9SV72) for the same receptor, TMM (AC Q9SSD1). Belongs to the plant cysteine rich small secretory peptide family. Epidermal patterning factor subfamily. (104 aa)
MUTETranscription factor MUTE; Transcription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. (202 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (22%) [HD]