STRINGSTRING
CBP60G CBP60G TGA2 TGA2 NPR1 NPR1 TGA6 TGA6 TGA5 TGA5 NPR4 NPR4 NPR3 NPR3 SARD1 SARD1 BZIP8 BZIP8 EDS1 EDS1 ICS1 ICS1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CBP60GCalmodulin-binding protein 60 G; Transcription activator that binds DNA in a sequence-specific manner, 5'-GAAATTTTGG-3', to promote the expression of target genes. Recruited to the promoter of ICS1 and other defense-related genes (e.g. PR1, PR2 and EDS5) in response to both biotic (e.g. Pseudomonas syringae pv. maculicola ES4326, P. syringae pv. tomato DC3000, and microbe- associated molecular patterns (MAMPs) such as flg22) and abiotic stresses (e.g. UV-B, drought and abscisic acid), thus triggering rapid defense responses by stimulating salicylic acid (SA) biosynthesis. Involved in b [...] (563 aa)
TGA2Transcription factor TGA2; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. Required to induce the systemic acquired resistance (SAR) via the regulation of pathogenesis-related genes expression. Binding to the as- 1 element of PR-1 promoter is salicylic acid-inducible and mediated by NPR1. Could also bind to the C-boxes (5'-ATGACGTCAT-3') with high affinity. (330 aa)
NPR1Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa)
TGA6Transcription factor TGA6; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. May be involved in the induction of the systemic acquired resistance (SAR) via its interaction with NPR1. Could also bind to the Hex-motif (5'- TGACGTGG-3') another cis-acting element found in plant histone promoters (By similarity). (330 aa)
TGA5Transcription factor TGA5; Transcriptional activator that binds specifically to the DNA sequence 5'-TGACG-3'. Recognizes ocs elements like the as-1 motif of the cauliflower mosaic virus 35S promoter. Binding to the as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. May be involved in the induction of the systemic acquired resistance (SAR) via its interaction with NPR1. Could also bind to the Hex-motif (5'- TGACGTGG-3') another cis-acting element found in plant histone promoters. (330 aa)
NPR4Regulatory protein NPR4; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens, and may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways. (574 aa)
NPR3Regulatory protein NPR3; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Involved in the regulation of basal defense responses against pathogens. (586 aa)
SARD1Protein SAR DEFICIENT 1; Transcription activator that binds DNA in a sequence-specific manner, 5'-GAAATTTTGG-3', to promote the expression of target genes. Recruited to the promoter of ICS1 and other defense-related genes (e.g. PR1 and SID2) in response to both biotic (e.g. Pseudomonas syringae pv. maculicola ES4326) and abiotic stresses (e.g. UV-B), thus triggering slow defense responses by stimulating salicylic acid (SA) biosynthesis. Required for basal and systemic acquired resistance to P. syringae pv. maculicola and Hyaloperonospora arabidopsidis. Belongs to the plant ACBP60 prote [...] (451 aa)
BZIP8Basic leucine zipper 8; Belongs to the bZIP family. (138 aa)
EDS1Protein EDS1; Positive regulator of basal resistance and of effector- triggered immunity specifically mediated by TIR-NB-LRR (TNL) resistance proteins. Disruption by bacterial effector of EDS1-TIR-NB-LRR resistance protein interactions constitutes the first step in resistance activation. Acts redundantly with salicylic acid to regulate resistance gene-mediated signaling. Triggers early plant defenses and hypersensitive response independently of PAD4, and then recruits PAD4 to potentiate plant defenses through the accumulation of salicylic acid. Nuclear localization is essential for bas [...] (623 aa)
ICS1Isochorismate synthase 1, chloroplastic; Involved in the synthesis of salicylic acid (SA) required for both local and systemic acquired resistance (LAR and SAR) while SA synthesized through the phenylalanine ammonium lyase (PAL) pathway seems to potentiate plant cell death. Also involved in phylloquinone (vitamin K1) synthesis. Has no isochorismate pyruvate lyase (IPL) activity. (569 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (16%) [HD]