STRINGSTRING
LOX1 LOX1 PR1 PR1 CHI-B CHI-B LOX6 LOX6 LOX4 LOX4 LOX3 LOX3 PRB1 PRB1 WRKY20 WRKY20 PR1-2 PR1-2 PAL1 PAL1 LOX2 LOX2 NPR1 NPR1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
LOX1Linoleate 9S-lipoxygenase 1; 9S-lipoxygenase that can use linoleic acid or linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Function as regulators of root development by controlling the emergence of lateral roots. (859 aa)
PR1Putative pathogenesis-related protein 1, 18.9K; Belongs to the CRISP family. (166 aa)
CHI-BBasic endochitinase B; Defense against chitin-containing fungal pathogens. Seems particularly implicated in resistance to jasmonate-inducing pathogens such as A.brassicicola. In vitro antifungal activity against T.reesei, but not against A.solani, F.oxysporum, S.sclerotiorum, G.graminis and P.megasperma. (335 aa)
LOX6Lipoxygenase 6, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. (917 aa)
LOX4Lipoxygenase 4, chloroplastic; Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). 13S-lipoxygenase that can use linolenic acid as substrates. (926 aa)
LOX3Lipoxygenase 3, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure (By similarity). (919 aa)
PRB1Pathogenesis-related protein 1; Probably involved in the defense reaction of plants against pathogens. (161 aa)
WRKY20Probable WRKY transcription factor 20; Transcription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis- acting element. (557 aa)
PR1-2Pathogenesis-related protein 1; Partially responsible for acquired pathogen resistance. (161 aa)
PAL1Phenylalanine ammonia-lyase 1; This is a key enzyme of plant metabolism catalyzing the first reaction in the biosynthesis from L-phenylalanine of a wide variety of natural products based on the phenylpropane skeleton; Belongs to the PAL/histidase family. (725 aa)
LOX2Lipoxygenase 2, chloroplastic; 13S-lipoxygenase that can use linolenic acid as substrates. Plant lipoxygenases may be involved in a number of diverse aspects of plant physiology including growth and development, pest resistance, and senescence or responses to wounding. Catalyzes the hydroperoxidation of lipids containing a cis,cis-1,4-pentadiene structure. Required for the wound-induced synthesis of jasmonic acid (JA) in leaves. (896 aa)
NPR1Regulatory protein NPR1; May act as a substrate-specific adapter of an E3 ubiquitin- protein ligase complex (CUL3-RBX1-BTB) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Key positive regulator of the SA-dependent signaling pathway that negatively regulates JA-dependent signaling pathway. Mediates the binding of TGA factors to the as-1 motif found in the pathogenesis-related PR-1 gene, leading to the transcriptional regulation of the gene defense. Controls the onset of systemic acquired resistance (SAR). Upon SAR induction, [...] (593 aa)
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (14%) [HD]