STRINGSTRING
clpP clpP rps12 rps12 matK matK rps16 rps16 atpA atpA atpI atpI ndhK ndhK ndhC ndhC cemA cemA psbN psbN ndhF ndhF ndhD ndhD ndhG ndhG ndhH ndhH ycf1 ycf1 rps7 rps7 ndhB ndhB ycf2 ycf2 rpl2 rpl2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (195 aa)
rps1230S ribosomal protein S12, chloroplastic; With S4 and S5 plays an important role in translational accuracy. Located at the interface of the 30S and 50S subunits. (123 aa)
matKMaturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (506 aa)
rps1630S ribosomal protein S16, chloroplastic. (89 aa)
atpAATP synthase subunit alpha, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (507 aa)
atpIATP synthase subunit a, chloroplastic; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (247 aa)
ndhKNAD(P)H-quinone oxidoreductase subunit K, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 20 kDa subunit family. (226 aa)
ndhCNAD(P)H-quinone oxidoreductase subunit 3, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (120 aa)
cemAEnvelope membrane protein, chloroplastic; May be involved in proton extrusion. Indirectly promotes efficient inorganic carbon uptake into chloroplasts. Belongs to the CemA family. (229 aa)
psbNProtein PsbN; May play a role in photosystem I and II biogenesis. Belongs to the PsbN family. (43 aa)
ndhFNAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (742 aa)
ndhDNAD(P)H-quinone oxidoreductase chain 4, chloroplastic. (500 aa)
ndhGNAD(P)H-quinone oxidoreductase subunit 6, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (176 aa)
ndhHNAD(P)H-quinone oxidoreductase subunit H, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (393 aa)
ycf1Protein TIC 214; Involved in protein precursor import into chloroplasts. May be part of an intermediate translocation complex acting as a protein- conducting channel at the inner envelope. (1871 aa)
rps730S ribosomal protein S7, chloroplastic; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. (155 aa)
ndhBNAD(P)H-quinone oxidoreductase subunit 2, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. (510 aa)
ycf2Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2277 aa)
rpl250S ribosomal protein L2, chloroplastic; Belongs to the universal ribosomal protein uL2 family. (272 aa)
Your Current Organism:
Prunus persica
NCBI taxonomy Id: 3760
Other names: Amygdalus persica, P. persica, Persica vulgaris, Persica vulgaris Mill., Prunus persica (L.) Batsch, Prunus persica var. densa, Prunus persica var. densa Makino, peach
Server load: low (22%) [HD]