Your Input: | |||||
GAU_0129 | Hypothetical protein. (499 aa) | ||||
GAU_0130 | Hypothetical protein. (465 aa) | ||||
ctaC | Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (429 aa) | ||||
ctaD | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (626 aa) | ||||
ctaE | Cytochrome c oxidase subunit III. (230 aa) | ||||
GAU_0507 | Hypothetical membrane protein. (114 aa) | ||||
ctaG | Putative CtaG protein. (307 aa) | ||||
GAU_0509 | Hypothetical protein. (209 aa) | ||||
GAU_0696 | Putative menaquinol-cytochrome c reductase cytochrome b/c subunit. (611 aa) | ||||
GAU_0697 | Rieske iron-sulfur protein. (178 aa) | ||||
nuoN | NADH-quinone oxidoreductase chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (520 aa) | ||||
nuoM | NADH-quinone oxidoreductase chain M. (521 aa) | ||||
nuoL | NADH-quinone oxidoreductase chain L. (674 aa) | ||||
nuoK | NADH-quinone oxidoreductase chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (97 aa) | ||||
nuoJ | NADH-quinone oxidoreductase chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (168 aa) | ||||
nuoI | NADH-quinone oxidoreductase chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (151 aa) | ||||
nuoH | NADH-quinone oxidoreductase chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (418 aa) | ||||
nuoG | Putative NADH-quinone oxidoreductase chain G. (521 aa) | ||||
nuoF | NADH-quinone oxidoreductase chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (442 aa) | ||||
nuoE | NADH-quinone oxidoreductase chain E. (155 aa) | ||||
nuoD | NADH-quinone oxidoreductase chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (394 aa) | ||||
nuoC | NADH-quinone oxidoreductase chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (213 aa) | ||||
nuoB | NADH-quinone oxidoreductase chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (212 aa) | ||||
nuoA | NADH-quinone oxidoreductase chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (134 aa) | ||||
GAU_1763 | Putative S16B family peptidase. (429 aa) | ||||
GAU_2032 | Hypothetical membrane protein. (443 aa) | ||||
GAU_2033 | Hypothetical protein. (266 aa) | ||||
GAU_2034 | Hypothetical membrane protein. (166 aa) | ||||
GAU_2035 | Hypothetical protein. (475 aa) | ||||
GAU_2036 | Putative oxidoreductase; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1028 aa) | ||||
GAU_2037 | Cytochrome c3. (205 aa) | ||||
GAU_2058 | Hypothetical protein. (299 aa) | ||||
GAU_2071 | Hypothetical protein. (169 aa) | ||||
GAU_2216 | Putative M16B family peptidase. (470 aa) | ||||
GAU_2217 | Putative M16B family peptidase. (496 aa) | ||||
nuoN-2 | NADH-quinone oxidoreductase chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (463 aa) | ||||
nuoM-2 | NADH-quinone oxidoreductase chain M. (512 aa) | ||||
nuoL-2 | NADH-quinone oxidoreductase chain L. (631 aa) | ||||
nuoK-2 | NADH-quinone oxidoreductase chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa) | ||||
nuoJ-2 | NADH-quinone oxidoreductase chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (169 aa) | ||||
nuoI-2 | NADH-quinone oxidoreductase chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (185 aa) | ||||
nuoH-2 | NADH-quinone oxidoreductase chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (384 aa) | ||||
nuoG-2 | Putative NADH-quinone oxidoreductase chain G. (500 aa) | ||||
nuoF-2 | NADH-quinone oxidoreductase chain F. (439 aa) | ||||
nuoE-2 | NADH-quinone oxidoreductase chain E. (158 aa) | ||||
nuoD-2 | NADH-quinone oxidoreductase chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (412 aa) | ||||
nuoC-2 | NADH-quinone oxidoreductase chain C. (174 aa) | ||||
nuoB-2 | NADH-quinone oxidoreductase chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (171 aa) | ||||
nuoA-2 | NADH-quinone oxidoreductase chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (122 aa) | ||||
GAU_2580 | Cytochrome oxidase assembly family protein. (326 aa) | ||||
ctaB | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (307 aa) | ||||
GAU_2709 | Hypothetical membrane protein. (241 aa) | ||||
GAU_2936 | Putative cytochrome c. (161 aa) | ||||
GAU_3316 | Hypothetical protein. (275 aa) | ||||
GAU_3317 | Hypothetical protein. (262 aa) | ||||
GAU_3683 | Hypothetical protein. (250 aa) | ||||
GAU_3776 | Putative cbb3 oxidase subunit IV. (65 aa) |