STRINGSTRING
KZO57868.1 KZO57868.1 mfd mfd recA recA mutM mutM A2U19_12460 A2U19_12460 dinB dinB KZO57830.1 KZO57830.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KZO57868.1DNA glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (278 aa)
mfdTranscription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1220 aa)
recADNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (367 aa)
mutMDNA-formamidopyrimidine glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. (303 aa)
A2U19_12460Transposase; Incomplete; too short partial abutting assembly gap; missing start; Derived by automated computational analysis using gene prediction method: Protein Homology. (291 aa)
dinBDNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (486 aa)
KZO57830.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (550 aa)
Your Current Organism:
Dietzia maris
NCBI taxonomy Id: 37915
Other names: ATCC 35013, AUCNM A-593, AUCNM:A:593, Brevibacterium maris, CCUG 44488, CIP 104188, D. maris, DSM 43672, IEGM 55, IFO 15801, IMV 195, JCM 6166, LMG 5361, LMG:5361, NBRC 15801, NRRL B-16941, NRRL:B:16941, Rhodococcus maris, VKM Ac-593, VKM:Ac:593
Server load: low (22%) [HD]