STRINGSTRING
atpD atpD atpA atpA atpC atpC atpH atpH atpG atpG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpDATP synthase F0F1 subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (504 aa)
atpAATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (509 aa)
atpCATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (134 aa)
atpHATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (188 aa)
atpGATP synthase F0F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (294 aa)
Your Current Organism:
Sinorhizobium meliloti
NCBI taxonomy Id: 382
Other names: ATCC 9930, CCUG 27879, CFBP 5561, DSM 30135, Ensifer meliloti, Ensifer sp. AC50a, Ensifer sp. AC50e, HAMBI 2148, IAM 12611, ICMP 12623, IFO 14782, JCM 20682, LMG 6133, LMG:6133, NBRC 14782, NCAIM B.01520, NRRL L-45, NZP 4027, Rhizobium meliloti, Rhizobium meliloti (megaplasmid pRME41B SYM), Rhizobium meliloti (plasmid pRmeGR4b), Rhizobium meliloti plasmid pRmeGR4b, Rhizobium sp. AC50e, S. meliloti
Server load: low (16%) [HD]