STRINGSTRING
rpoH rpoH rpmE rpmE rpoD rpoD rpsU rpsU tufB tufB nusG nusG rplK rplK rplA rplA rplJ rplJ rplL rplL rpoB rpoB rpoC rpoC rpsL rpsL rpsG rpsG fusA-1 fusA-1 tufA tufA rpsJ rpsJ rplC rplC rplD rplD rplW rplW rplB rplB rpsS rpsS rplV rplV rpsC rpsC rplP rplP rpmC rpmC rpsQ rpsQ rplN rplN rplX rplX rplE rplE rpsN rpsN rpsH rpsH rplF rplF rplR rplR rpsE rpsE rpmD rpmD rplO rplO rpsM rpsM rpsK rpsK rpsD rpsD rpoA rpoA rplQ rplQ smpB smpB rimP rimP nusA nusA infB infB rbfA rbfA truB truB rpsO rpsO rplU rplU rpmA rpmA rplY rplY rpmE2 rpmE2 prfB prfB lysS lysS rpsA rpsA PSEEN1614 PSEEN1614 rpmF rpmF tig tig infC infC rpmI rpmI rplT rplT PSEEN2056 PSEEN2056 infA infA PSEEN2314 PSEEN2314 fusA fusA tsf tsf rpsB rpsB map map rplS rplS trmD trmD rimM rimM rpsP rpsP rpsI rpsI rplM rplM rpsT rpsT rplI rplI rpsR rpsR rpsF rpsF rpmG rpmG rpmB rpmB rpoZ rpoZ atpC atpC atpD atpD atpG atpG atpA atpA atpH atpH atpF atpF atpE atpE atpB atpB atpI atpI rpmJ rpmJ
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rpoHSigma H (sigma 32) factor of RNA polymerase RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (284 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (71 aa)
rpoDSigma D (sigma 70) factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (616 aa)
rpsU30S ribosomal protein S21; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)
tufBProtein chain elongation factor (EF-Tu-B); This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (397 aa)
nusGTranscription antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (177 aa)
rplK50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (143 aa)
rplA50S ribosomal subunit protein L1, regulates synthesis of L1 and L11; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (231 aa)
rplJ50S ribosomal subunit protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (166 aa)
rplL50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa)
rpoBRNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1357 aa)
rpoCRNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1399 aa)
rpsL30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy. (123 aa)
rpsG30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
fusA-1Protein chain elongation factor EF-G, GTP-binding; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase f [...] (715 aa)
tufAProtein chain elongation factor (EF-Tu-A); Function of homologous gene experimentally demonstrated in an other organism; factor. (397 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rplC50S ribosomal subunit protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (211 aa)
rplD50S ribosomal subunit protein L4, regulates expression of S10 operon; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (200 aa)
rplW50S ribosomal subunit protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (99 aa)
rplB50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (274 aa)
rpsS30S ribosomal subunit protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (91 aa)
rplV50S ribosomal subunit protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (110 aa)
rpsC30S ribosomal subunit protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (228 aa)
rplP50S ribosomal subunit protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa)
rpmC50S ribosomal subunit protein L29; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the universal ribosomal protein uL29 family. (64 aa)
rpsQ30S ribosomal subunit protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (88 aa)
rplN50S ribosomal subunit protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa)
rplX50S ribosomal subunit protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (104 aa)
rplE50S ribosomal subunit protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rpsN30S ribosomal subunit protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa)
rpsH30S ribosomal subunit protein S8, and regulator; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa)
rplF50S ribosomal subunit protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa)
rplR50S ribosomal subunit protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (116 aa)
rpsE30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (166 aa)
rpmD50S ribosomal protein L30; Function of homologous gene experimentally demonstrated in an other organism; structural protein. (58 aa)
rplO50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (144 aa)
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa)
rpsK30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (333 aa)
rplQ50S ribosomal protein L17; Function of homologous gene experimentally demonstrated in an other organism; structural protein. (128 aa)
smpBssrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (160 aa)
rimPConserved hypothetical protein; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (169 aa)
nusATranscription termination/antitermination, L factor (N utilization substance protein A); Participates in both transcription termination and antitermination. (493 aa)
infBProtein chain initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (850 aa)
rbfARibosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (132 aa)
truBtRNA pseudouridine 55 synthase; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (305 aa)
rpsO30S ribosomal protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa)
rplU50S ribosomal subunit protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (104 aa)
rpmA50S ribosomal subunit protein L27; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL27 family. (85 aa)
rplY50S ribosomal subunit protein L25 (General stress protein CTC); This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (198 aa)
rpmE250S ribosomal protein L31 type B; Function of homologous gene experimentally demonstrated in an other organism; structural protein. (85 aa)
prfBPeptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (364 aa)
lysSlysyl-tRNA synthetase; Function of homologous gene experimentally demonstrated in an other organism; enzyme; Belongs to the class-II aminoacyl-tRNA synthetase family. (500 aa)
rpsA30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (558 aa)
PSEEN1614Conserved hypothetical protein; Homologs of previously reported genes of unknown function. (175 aa)
rpmF50S ribosomal protein L32; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL32 family. (60 aa)
tigTrigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (437 aa)
infCProtein chain initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (183 aa)
rpmI50S ribosomal subunit protein A; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL35 family. (64 aa)
rplT50S ribosomal protein L20, also posttranslational autoregulator; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa)
PSEEN2056Putative protein chain release factor B; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; factor. (137 aa)
infAProtein chain initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
PSEEN2314Hypothetical protein; No homology to any previously reported sequences. (174 aa)
fusAProtein chain elongation factor EF-G, GTP-binding; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase f [...] (703 aa)
tsfProtein chain elongation factor EF-Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (287 aa)
rpsB30S ribosomal protein S2; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the universal ribosomal protein uS2 family. (245 aa)
mapMethionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (260 aa)
rplS50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (116 aa)
trmDtRNA (guanine-1-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (250 aa)
rimM16S rRNA processing protein; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (178 aa)
rpsP30S ribosomal subunit protein S16; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bS16 family. (83 aa)
rpsI30S ribosomal protein S9; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the universal ribosomal protein uS9 family. (130 aa)
rplM50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
rpsT30S ribosomal subunit protein S20; Binds directly to 16S ribosomal RNA. (92 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (148 aa)
rpsR30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (76 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (141 aa)
rpmG50S ribosomal protein L33; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL33 family. (51 aa)
rpmB50S ribosomal protein L28; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL28 family. (78 aa)
rpoZDNA-directed RNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (87 aa)
atpCATP synthase F1, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (139 aa)
atpDATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (458 aa)
atpGATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (286 aa)
atpAATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (514 aa)
atpHATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (178 aa)
atpFATP synthase F0, B subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa)
atpEATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (85 aa)
atpBATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (289 aa)
atpIATP synthase protein I; Function of homologous gene experimentally demonstrated in an other organism; enzyme. (135 aa)
rpmJ50S ribosomal protein L36; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
Your Current Organism:
Pseudomonas entomophila
NCBI taxonomy Id: 384676
Other names: P. entomophila L48, Pseudomonas entomophila L48, Pseudomonas entomophila str. L48, Pseudomonas entomophila strain L48
Server load: low (14%) [HD]