STRINGSTRING
nuoA nuoA nuoB nuoB nuoC nuoC nuoD nuoD NIS_0293 NIS_0293 NIS_0294 NIS_0294 nuoG nuoG nuoH nuoH nuoI nuoI nuoJ nuoJ nuoK nuoK nuoL nuoL nuoM nuoM nuoN nuoN acpP acpP NIS_0409 NIS_0409 NIS_0716 NIS_0716
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nuoANADH-quinone oxidoreductase, chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (130 aa)
nuoBNADH-quinone oxidoreductase, chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (169 aa)
nuoCNADH-quinone oxidoreductase, chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (263 aa)
nuoDNADH-quinone oxidoreductase, chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (410 aa)
NIS_0293FAD-dependent pyridine nucleotide-disulphide oxidoreductase. (680 aa)
NIS_0294NADH-quinone oxidoreductase, chain G. (758 aa)
nuoGNADH-quinone oxidoreductase, chain G. (827 aa)
nuoHNADH-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (330 aa)
nuoINADH-quinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (203 aa)
nuoJNADH-quinone oxidoreductase, chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (184 aa)
nuoKNADH-quinone oxidoreductase, chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoLNADH-quinone oxidoreductase, chain L. (631 aa)
nuoMNADH-quinone oxidoreductase, chain M. (508 aa)
nuoNNADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (494 aa)
acpPAcyl carrier protein ACP; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (78 aa)
NIS_04094Fe-4S ferredoxin. (84 aa)
NIS_0716Ni-Fe hydrogenase, membrane subunit HyfF; Group 4, formate-hydrogen lyase complex FHL membrane subunit. (467 aa)
Your Current Organism:
Nitratiruptor sp. SB1552
NCBI taxonomy Id: 387092
Other names: N. sp. SB155-2, Nitratiruptor sp. SB155-2
Server load: low (14%) [HD]