STRINGSTRING
EHF_0881 EHF_0881 EHF_0994 EHF_0994 EHF_0563 EHF_0563 nuoE nuoE nuoD nuoD nuoF nuoF EHF_0500 EHF_0500 nuoK nuoK EHF_0502 EHF_0502 EHF_0503 EHF_0503 nuoN nuoN EHF_0002 EHF_0002 EHF_0098 EHF_0098 ctaD ctaD coxB coxB EHF_0189 EHF_0189 sdhA sdhA EHF_0272 EHF_0272 EHF_0283 EHF_0283 EHF_0284 EHF_0284 EHF_0418 EHF_0418 petA petA petB petB petC petC nuoG nuoG nuoA nuoA nuoB nuoB nuoC nuoC sdhC sdhC EHF_0844 EHF_0844
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
EHF_0881NADH-Ubiquinone/plastoquinone (complex I), various chains family protein. (491 aa)
EHF_09944Fe-4S binding domain protein; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (94 aa)
EHF_05632Fe-2S iron-sulfur cluster binding domain protein. (116 aa)
nuoENADH-quinone oxidoreductase, E subunit. (181 aa)
nuoDNADH dehydrogenase (quinone), D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (384 aa)
nuoFNADH oxidoreductase (quinone), F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (420 aa)
EHF_0500NADH-ubiquinone/plastoquinone oxidoreductase chain 6 family protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (200 aa)
nuoKNADH-ubiquinone/plastoquinone oxidoreductase chain 4L family protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (108 aa)
EHF_0502Proton-translocating NADH-quinone oxidoreductase, chain L family protein. (621 aa)
EHF_0503Proton-translocating NADH-quinone oxidoreductase, chain M family protein. (478 aa)
nuoNProton-translocating NADH-quinone oxidoreductase, chain N family protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (475 aa)
EHF_0002Cytochrome c oxidase subunit 3. (274 aa)
EHF_0098Cytochrome C and Quinol oxidase polypeptide I family protein. (333 aa)
ctaDCytochrome c oxidase, subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (518 aa)
coxBCytochrome c oxidase, subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (232 aa)
EHF_0189ETC complex I subunit conserved region family protein. (97 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (598 aa)
EHF_0272Succinate dehydrogenase and fumarate reductase iron-sulfur family protein; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (258 aa)
EHF_0283Cytochrome c family protein. (172 aa)
EHF_0284NADH-Ubiquinone/plastoquinone (complex I), various chains family protein. (494 aa)
EHF_0418NADH-Ubiquinone/plastoquinone (complex I), various chains family protein. (529 aa)
petAUbiquinol-cytochrome c reductase, iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (187 aa)
petBCytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (377 aa)
petCCytochrome c1. (251 aa)
nuoGNADH dehydrogenase (quinone), G subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (684 aa)
nuoANADH-ubiquinone/plastoquinone oxidoreductase, chain 3 family protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (123 aa)
nuoBNADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (177 aa)
nuoCNADH-quinone oxidoreductase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (192 aa)
sdhCSuccinate dehydrogenase, cytochrome b556 subunit. (128 aa)
EHF_0844Prokaryotic cytochrome b561 family protein. (176 aa)
Your Current Organism:
Ehrlichia sp. HF
NCBI taxonomy Id: 391036
Other names: E. sp. HF
Server load: low (34%) [HD]