Your Input: | |||||
Swit_0024 | PFAM: peptidyl-prolyl cis-trans isomerase, cyclophilin type. (302 aa) | ||||
rnd | Ribonuclease D; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides; Belongs to the RNase D family. (395 aa) | ||||
aspS | aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (593 aa) | ||||
rpoH | RNA polymerase sigma factor RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (301 aa) | ||||
Swit_0061 | Ribosomal large subunit pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (321 aa) | ||||
Swit_0062 | PFAM: Mov34/MPN/PAD-1 family protein. (141 aa) | ||||
rplI | LSU ribosomal protein L9P; Binds to the 23S rRNA. (202 aa) | ||||
rpsR | SSU ribosomal protein S18P; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (74 aa) | ||||
Swit_0140 | PFAM: helicase domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases-like; Belongs to the DEAD box helicase family. (448 aa) | ||||
era | GTP-binding protein Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (297 aa) | ||||
rnc | RNAse III; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (234 aa) | ||||
Swit_0210 | Hypothetical protein. (58 aa) | ||||
greB | Transcription elongation factor GreB; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreB releases sequences of up to 9 nucleotides in length. (163 aa) | ||||
rpoD | RNA polymerase, sigma 70 subunit, RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (674 aa) | ||||
rpsB | PFAM: ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (250 aa) | ||||
tsf | Translation elongation factor Ts (EF-Ts); Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (307 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (237 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
Swit_0464 | Undecaprenyl pyrophosphate synthetase; Catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic pyrophosphates generating different type of terpenoids. (248 aa) | ||||
Swit_0465 | PFAM: phosphatidate cytidylyltransferase; Belongs to the CDS family. (268 aa) | ||||
Swit_0467 | TIGRFAM: putative membrane-associated zinc metalloprotease; PFAM: peptidase M50; SMART: PDZ/DHR/GLGF domain protein. (377 aa) | ||||
rpmE | LSU ribosomal protein L31P; Binds the 23S rRNA; Belongs to the bacterial ribosomal protein bL31 family. Type A subfamily. (76 aa) | ||||
alaS | alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (887 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (160 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (551 aa) | ||||
atpH | ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (184 aa) | ||||
atpA | ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (509 aa) | ||||
atpG | ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (294 aa) | ||||
atpD | ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (484 aa) | ||||
atpC | H+-transporting two-sector ATPase, delta/epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (87 aa) | ||||
dksA | Transcriptional regulator, TraR/DksA family; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. (155 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (425 aa) | ||||
Swit_0794 | PFAM: Tetratricopeptide TPR_4. (539 aa) | ||||
Swit_0873 | Phospholipid-binding protein, PBP family; PFAM: PEBP family protein. (207 aa) | ||||
Swit_0983 | TIGRFAM: methyltransferase FkbM family; PFAM: coagulation factor 5/8 type domain protein; SMART: Fucolectin tachylectin-4 pentraxin-1. (416 aa) | ||||
rpsD | SSU ribosomal protein S4P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (204 aa) | ||||
rplQ | PFAM: ribosomal protein L17. (140 aa) | ||||
rpoA | DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (353 aa) | ||||
rpsK | SSU ribosomal protein S11P; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpsM | SSU ribosomal protein S13P; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (137 aa) | ||||
secY | Protein translocase subunit secY/sec61 alpha; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (455 aa) | ||||
rplO | LSU ribosomal protein L15P; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (173 aa) | ||||
rpmD | PFAM: ribosomal protein L30. (61 aa) | ||||
rpsE | SSU ribosomal protein S5P; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family. (239 aa) | ||||
rplR | LSU ribosomal protein L18P; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (118 aa) | ||||
rplF | LSU ribosomal protein L6P; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa) | ||||
rpsH | SSU ribosomal protein S8P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa) | ||||
rpsN | SSU ribosomal protein S14P; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa) | ||||
rplE | LSU ribosomal protein L5P; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (193 aa) | ||||
rplX | LSU ribosomal protein L24P; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (105 aa) | ||||
rplN | LSU ribosomal protein MRPL14P; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (123 aa) | ||||
rpsQ | SSU ribosomal protein S17P; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (86 aa) | ||||
rpmC | PFAM: ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (67 aa) | ||||
rplP | LSU ribosomal protein L16P; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (143 aa) | ||||
rpsC | SSU ribosomal protein S3P; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (231 aa) | ||||
rplV | LSU ribosomal protein L22P; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). (127 aa) | ||||
rpsS | SSU ribosomal protein S19P; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (90 aa) | ||||
rplB | LSU ribosomal protein L2P; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (278 aa) | ||||
rplW | LSU ribosomal protein L23P; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (104 aa) | ||||
rplD | LSU ribosomal protein L4P; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (208 aa) | ||||
rplC | LSU ribosomal protein L3P; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (317 aa) | ||||
rpsJ | SSU ribosomal protein S10P; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa) | ||||
tuf | Translation elongation factor 1A (EF-1A/EF-Tu); This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (396 aa) | ||||
fusA | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (690 aa) | ||||
rpsG | SSU ribosomal protein S7P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
rpsL | SSU ribosomal protein S12P; With S4 and S5 plays an important role in translational accuracy. (123 aa) | ||||
Swit_1373 | PFAM: Class I peptide chain release factor. (140 aa) | ||||
Swit_1376 | PFAM: pseudouridine synthase. (250 aa) | ||||
rplY | LSU ribosomal protein L25P; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (207 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (189 aa) | ||||
ychF | GTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (366 aa) | ||||
yajC | Protein translocase subunit yajC; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (112 aa) | ||||
secD | Protein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (531 aa) | ||||
secF | Protein translocase subunit secF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (321 aa) | ||||
Swit_1455 | PFAM: protein of unknown function DUF498. (125 aa) | ||||
Swit_1494 | SMART: nuclear protein SET. (155 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (420 aa) | ||||
map | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (274 aa) | ||||
Swit_1716 | Peptidyl-prolyl cis-trans isomerase (rotamase) - cyclophilin family-like protein. (177 aa) | ||||
Swit_1940 | PFAM: Fmu (Sun) domain protein; NusB/RsmB/TIM44; Methyltransferase type 12; Belongs to the class I-like SAM-binding methyltransferase superfamily. RsmB/NOP family. (422 aa) | ||||
rpmB | PFAM: ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (97 aa) | ||||
proS | prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro); Belongs to the class-II aminoacyl-tRNA synthetase family. ProS type 2 subfamily. (437 aa) | ||||
Swit_2349 | Protein translocase subunit secG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (124 aa) | ||||
Swit_2351 | Hypothetical protein. (676 aa) | ||||
Swit_2426 | TIGRFAM: RNA methyltransferase, TrmH family, group 3; PFAM: tRNA/rRNA methyltransferase (SpoU); RNA 2-O ribose methyltransferase, substrate binding; Belongs to the class IV-like SAM-binding methyltransferase superfamily. RNA methyltransferase TrmH family. (247 aa) | ||||
pheT | TIGRFAM: phenylalanyl-tRNA synthetase, beta subunit; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (792 aa) | ||||
pheS | TIGRFAM: phenylalanyl-tRNA synthetase, alpha subunit; PFAM: phenylalanyl-tRNA synthetase, class IIc; aminoacyl tRNA synthetase, class II domain protein; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (360 aa) | ||||
rplT | LSU ribosomal protein L20P; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (125 aa) | ||||
rpmI | PFAM: ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (67 aa) | ||||
gltX1 | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (443 aa) | ||||
Swit_2456 | SSU ribosomal protein S1P; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (569 aa) | ||||
Swit_2488 | PFAM: ABC transporter related; SMART: AAA ATPase. (534 aa) | ||||
Swit_2489 | PFAM: peptidyl-prolyl cis-trans isomerase, cyclophilin type. (227 aa) | ||||
prmC | Modification methylase, HemK family; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (274 aa) | ||||
prfA | Bacterial peptide chain release factor 1 (bRF-1); Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (360 aa) | ||||
hisS | TIGRFAM: histidyl-tRNA synthetase; PFAM: tRNA synthetase, class II (G, H, P and S); Anticodon-binding domain protein. (415 aa) | ||||
ppa | Inorganic diphosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (179 aa) | ||||
secE | Protein translocase subunit secE/sec61 gamma; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. (65 aa) | ||||
nusG | Transcription antitermination protein nusG; Participates in transcription elongation, termination and antitermination. (179 aa) | ||||
rplK | LSU ribosomal protein L11P; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (143 aa) | ||||
rplA | LSU ribosomal protein L1P; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (232 aa) | ||||
ffh | Signal recognition particle subunit FFH/SRP54 (srp54); Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the i [...] (491 aa) | ||||
rpsP | PFAM: ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (154 aa) | ||||
rimM | 16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (157 aa) | ||||
trmD | tRNA (Guanine37-N(1)-) methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (246 aa) | ||||
rplS | LSU ribosomal protein L19P; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (129 aa) | ||||
secA | Protein translocase subunit secA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. Belongs to the SecA family. (912 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (690 aa) | ||||
infC | Bacterial translation initiation factor 3 (bIF-3); IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (169 aa) | ||||
rpmG | PFAM: ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family. (55 aa) | ||||
Swit_2821 | PFAM: Ankyrin. (208 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (418 aa) | ||||
leuS | TIGRFAM: leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (835 aa) | ||||
ftsY | Signal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (311 aa) | ||||
efp | Translation elongation factor P (EF-P); Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (187 aa) | ||||
Swit_3098 | PFAM: Ankyrin. (1162 aa) | ||||
rpmJ | TIGRFAM: ribosomal protein L36; Belongs to the bacterial ribosomal protein bL36 family. (41 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (607 aa) | ||||
gltX2 | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (474 aa) | ||||
trmB | tRNA (guanine-N(7)-)-methyltransferase; Catalyzes the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA. (230 aa) | ||||
Swit_3449 | TIGRFAM: ATP-dependent helicase HrpB; PFAM: helicase domain protein; helicase-associated domain protein; DEAD/DEAH box helicase domain protein; Helicase ATP-dependent, C-terminal domain protein; SMART: DEAD-like helicases-like. (814 aa) | ||||
rpoC | DNA-directed RNA polymerase, beta' subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1423 aa) | ||||
rpoB | DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1455 aa) | ||||
rplL | LSU ribosomal protein L12P; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (126 aa) | ||||
rplJ | LSU ribosomal protein L10P; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (171 aa) | ||||
Swit_3480 | PFAM: ABC transporter related; SMART: AAA ATPase. (634 aa) | ||||
rpoZ | DNA-directed RNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (113 aa) | ||||
Swit_3531 | Peptidyl-prolyl cis-trans isomerase, cyclophilin type; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. (155 aa) | ||||
Swit_3535 | PFAM: Tetratricopeptide TPR_4. (934 aa) | ||||
Swit_3537 | Transcriptional regulator, CarD family; PFAM: transcription factor CarD. (172 aa) | ||||
rpmF | TIGRFAM: ribosomal protein L32; PFAM: ribosomal L32p protein; Belongs to the bacterial ribosomal protein bL32 family. (59 aa) | ||||
Swit_3565 | SMART: helicase c2. (911 aa) | ||||
rpmH | PFAM: ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
yidC | Protein translocase subunit yidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (577 aa) | ||||
engB | GTP-binding protein, HSR1-related; Necessary for normal cell division and for the maintenance of normal septation; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngB GTPase family. (220 aa) | ||||
ileS | Isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (953 aa) | ||||
Swit_3798 | PFAM: helicase domain protein; DbpA, RNA-binding domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases-like; Belongs to the DEAD box helicase family. (593 aa) | ||||
prfC | Bacterial peptide chain release factor 3 (bRF-3); Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (527 aa) | ||||
truB | tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (324 aa) | ||||
rpsO | SSU ribosomal protein S15P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. (89 aa) | ||||
pnp | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (774 aa) | ||||
Swit_3813 | Hypothetical protein. (121 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (132 aa) | ||||
infB | Bacterial translation initiation factor 2 (bIF-2); One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (856 aa) | ||||
Swit_3817 | PFAM: protein of unknown function DUF448. (246 aa) | ||||
Swit_3818 | PFAM: 4-oxalocrotonate tautomerase. (76 aa) | ||||
nusA | NusA antitermination factor; Participates in both transcription termination and antitermination. (529 aa) | ||||
rimP | Protein of unknown function DUF150; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (186 aa) | ||||
secB | Protein translocase subunit secB; One of the proteins required for the normal export of preproteins out of the cell cytoplasm. It is a molecular chaperone that binds to a subset of precursor proteins, maintaining them in a translocation-competent state. It also specifically binds to its receptor SecA. (215 aa) | ||||
Swit_3839 | Hypothetical protein. (131 aa) | ||||
prfB | Bacterial peptide chain release factor 2 (bRF-2); Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (375 aa) | ||||
rne | RNAse E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the RNase E/G family. RNase E subfamily. (880 aa) | ||||
rpsU | PFAM: ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (81 aa) | ||||
Swit_3870 | PFAM: peptidylprolyl isomerase, FKBP-type. (189 aa) | ||||
rplU | LSU ribosomal protein L21P; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (120 aa) | ||||
rpmA | PFAM: ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (89 aa) | ||||
obg | GTP-binding protein Obg/CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (345 aa) | ||||
argS | TIGRFAM: arginyl-tRNA synthetase. (576 aa) | ||||
rnr | RNAse R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (769 aa) | ||||
Swit_4107 | PFAM: TPR repeat-containing protein; Tetratricopeptide TPR_2 repeat protein; SMART: Tetratricopeptide domain protein. (552 aa) | ||||
Swit_4108 | PFAM: peptidyl-prolyl cis-trans isomerase, cyclophilin type. (199 aa) | ||||
atpB | ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (261 aa) | ||||
atpE | H+-transporting two-sector ATPase, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (75 aa) | ||||
atpF | H+-transporting two-sector ATPase, B/B' subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (163 aa) | ||||
atpF-2 | H+-transporting two-sector ATPase, B/B' subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (205 aa) | ||||
rpsI | PFAM: ribosomal protein S9; Belongs to the universal ribosomal protein uS9 family. (188 aa) | ||||
rplM | LSU ribosomal protein L13P; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (159 aa) | ||||
infA-2 | Bacterial translation initiation factor 1 (bIF-1); One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (86 aa) | ||||
Swit_4663 | PFAM: deoxyhypusine synthase; Belongs to the deoxyhypusine synthase family. (350 aa) | ||||
rlmE | Ribosomal RNA methyltransferase RrmJ/FtsJ; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (229 aa) | ||||
Swit_4724 | PFAM: helicase domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases-like. (453 aa) | ||||
map-2 | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (279 aa) | ||||
Swit_4834 | PFAM: molybdopterin binding domain. (256 aa) | ||||
rpsT | SSU ribosomal protein S20P; Binds directly to 16S ribosomal RNA. (87 aa) |