STRINGSTRING
dnaX dnaX priA priA polA polA Swit_0485 Swit_0485 recA recA Swit_1516 Swit_1516 ruvB ruvB ruvA ruvA ruvC ruvC Swit_2198 Swit_2198 Swit_2340 Swit_2340 Swit_2452 Swit_2452 Swit_2795 Swit_2795 recF recF dnaQ dnaQ Swit_2850 Swit_2850 recR recR recO recO Swit_4733 Swit_4733
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dnaXDNA polymerase III, subunits gamma and tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (582 aa)
priAPrimosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (734 aa)
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (941 aa)
Swit_0485DNA polymerase III, delta prime subunit. (325 aa)
recArecA protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (357 aa)
Swit_1516PFAM: helicase domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases-like. (686 aa)
ruvBHolliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (342 aa)
ruvAHolliday junction DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (199 aa)
ruvCCrossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (165 aa)
Swit_2198TIGRFAM: single-strand binding protein; PFAM: single-strand binding protein/Primosomal replication protein n. (151 aa)
Swit_2340TIGRFAM: DNA polymerase III, alpha subunit; PFAM: PHP C-terminal domain protein; SMART: phosphoesterase PHP domain protein. (1155 aa)
Swit_2452TIGRFAM: single-strand binding protein; PFAM: single-strand binding protein/Primosomal replication protein n. (195 aa)
Swit_2795DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (370 aa)
recFDNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP. (356 aa)
dnaQDNA polymerase III, epsilon subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. (234 aa)
Swit_2850TIGRFAM: DNA polymerase III, delta subunit; PFAM: DNA polymerase III, delta. (340 aa)
recRRecombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (198 aa)
recODNA repair protein RecO; Involved in DNA repair and RecF pathway recombination. (243 aa)
Swit_4733TIGRFAM: single-stranded-DNA-specific exonuclease RecJ; PFAM: phosphoesterase, RecJ domain protein; phosphoesterase, DHHA1. (588 aa)
Your Current Organism:
Sphingomonas wittichii
NCBI taxonomy Id: 392499
Other names: S. wittichii RW1, Sphingomonas sp. RW1, Sphingomonas wittichii DSM 6014, Sphingomonas wittichii RW1, Sphingomonas wittichii str. RW1, Sphingomonas wittichii strain RW1
Server load: low (22%) [HD]