Your Input:  | |||||
| SDJ82149.1 | S-layer homology domain-containing protein. (455 aa) | ||||
| rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (449 aa) | ||||
| rpmE | LSU ribosomal protein L31P; Binds the 23S rRNA. (65 aa) | ||||
| SDJ89316.1 | Putative F0F1-ATPase subunit Ca2+/Mg2+ transporter. (77 aa) | ||||
| SDJ89353.1 | ATP synthase I chain. (135 aa) | ||||
| atpB | ATP synthase F0 subcomplex A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (233 aa) | ||||
| atpE | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (184 aa) | ||||
| atpE-2 | ATP synthase F0 subcomplex C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (88 aa) | ||||
| atpF | ATP synthase F0 subcomplex B subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (168 aa) | ||||
| atpH | ATP synthase F1 subcomplex delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (180 aa) | ||||
| atpA | ATP synthase F1 subcomplex alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (503 aa) | ||||
| atpG | ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (290 aa) | ||||
| atpD | ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (465 aa) | ||||
| atpC | ATP synthase F1 subcomplex epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (136 aa) | ||||
| hpf | SSU ribosomal protein S30P/sigma 54 modulation protein; Required for dimerization of active 70S ribosomes into 100S ribosomes in stationary phase; 100S ribosomes are translationally inactive and sometimes present during exponential growth. (179 aa) | ||||
| prfB | Bacterial peptide chain release factor 2 (bRF-2); Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (327 aa) | ||||
| tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (429 aa) | ||||
| prfC | Bacterial peptide chain release factor 3 (bRF-3); Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (530 aa) | ||||
| rpsT | SSU ribosomal protein S20P; Binds directly to 16S ribosomal RNA. (87 aa) | ||||
| rpsU | Small subunit ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (60 aa) | ||||
| rpoZ | DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (73 aa) | ||||
| rpmB | LSU ribosomal protein L28P; Belongs to the bacterial ribosomal protein bL28 family. (63 aa) | ||||
| SDK43719.1 | Uncharacterized protein. (173 aa) | ||||
| rpmF | LSU ribosomal protein L32P; Belongs to the bacterial ribosomal protein bL32 family. (60 aa) | ||||
| rpsP | SSU ribosomal protein S16P; Belongs to the bacterial ribosomal protein bS16 family. (81 aa) | ||||
| SDK44479.1 | RNA-binding protein (KH domain); Belongs to the UPF0109 family. (75 aa) | ||||
| rimM | 16S rRNA processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (166 aa) | ||||
| trmD | tRNA (Guanine37-N(1)-) methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (246 aa) | ||||
| rplS | LSU ribosomal protein L19P; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (116 aa) | ||||
| rpsB | SSU ribosomal protein S2P; Belongs to the universal ribosomal protein uS2 family. (232 aa) | ||||
| tsf | Translation elongation factor Ts (EF-Ts); Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (215 aa) | ||||
| pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (238 aa) | ||||
| frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
| rpsO | SSU ribosomal protein S15P; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (87 aa) | ||||
| SDK48680.1 | SSU ribosomal protein S1P. (390 aa) | ||||
| efp | Translation elongation factor P (EF-P); Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (185 aa) | ||||
| rpmA | LSU ribosomal protein L27P; Belongs to the bacterial ribosomal protein bL27 family. (93 aa) | ||||
| rplU | LSU ribosomal protein L21P; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
| smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (155 aa) | ||||
| SDK73854.1 | ATPase components of ABC transporters with duplicated ATPase domains. (529 aa) | ||||
| SDK73881.1 | ATP-binding cassette, subfamily F, uup. (639 aa) | ||||
| SDK74915.1 | Bacterial translation initiation factor 3 (bIF-3); IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (142 aa) | ||||
| rpmI | LSU ribosomal protein L35P; Belongs to the bacterial ribosomal protein bL35 family. (63 aa) | ||||
| rplT | LSU ribosomal protein L20P; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (119 aa) | ||||
| SDK82524.1 | ATPase components of ABC transporters with duplicated ATPase domains. (518 aa) | ||||
| glnS | glutaminyl-tRNA synthetase. (552 aa) | ||||
| SDK85297.1 | Manganese-dependent inorganic pyrophosphatase. (537 aa) | ||||
| greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (163 aa) | ||||
| rplI | LSU ribosomal protein L9P; Binds to the 23S rRNA. (148 aa) | ||||
| tuf | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (397 aa) | ||||
| rpsJ | SSU ribosomal protein S10P; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (106 aa) | ||||
| rplC | LSU ribosomal protein L3P; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (210 aa) | ||||
| rplD | LSU ribosomal protein L4P; Forms part of the polypeptide exit tunnel. (207 aa) | ||||
| rplW | Large subunit ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (96 aa) | ||||
| rplB | LSU ribosomal protein L2P; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (276 aa) | ||||
| rpsS | SSU ribosomal protein S19P; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa) | ||||
| rplV | LSU ribosomal protein L22P; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (110 aa) | ||||
| rpsC | SSU ribosomal protein S3P; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (228 aa) | ||||
| rplP | LSU ribosomal protein L16P; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (147 aa) | ||||
| rpmC | LSU ribosomal protein L29P; Belongs to the universal ribosomal protein uL29 family. (67 aa) | ||||
| rpsQ | SSU ribosomal protein S17P; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa) | ||||
| rplN | LSU ribosomal protein L14P; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
| rplX | LSU ribosomal protein L24P; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (104 aa) | ||||
| rplE | LSU ribosomal protein L5P; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa) | ||||
| rpsZ | Small subunit ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
| rpsH | SSU ribosomal protein S8P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa) | ||||
| rplF | LSU ribosomal protein L6P; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa) | ||||
| rplR | LSU ribosomal protein L18P; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (122 aa) | ||||
| rpsE | SSU ribosomal protein S5P; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (168 aa) | ||||
| rpmD | LSU ribosomal protein L30P. (59 aa) | ||||
| rplO | LSU ribosomal protein L15P; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (147 aa) | ||||
| secY | Protein translocase subunit secY/sec61 alpha; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (424 aa) | ||||
| adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (216 aa) | ||||
| map | Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (248 aa) | ||||
| SDL18620.1 | Hypothetical protein. (92 aa) | ||||
| infA | Bacterial translation initiation factor 1 (bIF-1); One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
| rpsM | SSU ribosomal protein S13P; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (123 aa) | ||||
| rpsK | Small subunit ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (132 aa) | ||||
| rpsD | SSU ribosomal protein S4P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (207 aa) | ||||
| rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (315 aa) | ||||
| rplQ | LSU ribosomal protein L17P. (113 aa) | ||||
| rplM | LSU ribosomal protein L13P; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa) | ||||
| rpsI | SSU ribosomal protein S9P; Belongs to the universal ribosomal protein uS9 family. (130 aa) | ||||
| SDL26529.1 | Elongation factor Tu. (397 aa) | ||||
| SDL27480.1 | Translation elongation factor 2 (EF-2/EF-G). (689 aa) | ||||
| rpsF | SSU ribosomal protein S6P; Binds together with S18 to 16S ribosomal RNA. (94 aa) | ||||
| rpsR | SSU ribosomal protein S18P; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (77 aa) | ||||
| rplY | LSU ribosomal protein L25P; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (197 aa) | ||||
| rplY-2 | LSU ribosomal protein L25P; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (203 aa) | ||||
| fusA | Translation elongation factor 2 (EF-2/EF-G); Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. [...] (691 aa) | ||||
| rpsG | Small subunit ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
| rpsL | Small subunit ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (138 aa) | ||||
| SDL32246.1 | Large subunit ribosomal protein L7A. (80 aa) | ||||
| rpoC | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1171 aa) | ||||
| rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1245 aa) | ||||
| rplL | Large subunit ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (121 aa) | ||||
| rplJ | LSU ribosomal protein L10P; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (166 aa) | ||||
| rplA | LSU ribosomal protein L1P; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (250 aa) | ||||
| rplK | Large subunit ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa) | ||||
| nusG | Transcription antitermination protein nusG; Participates in transcription elongation, termination and antitermination. (163 aa) | ||||