STRINGSTRING
dgk dgk nuoM nuoM nuoN nuoN nuoM-2 nuoM-2 nuoL nuoL nuoK nuoK nuoJ nuoJ nuoI nuoI nuoH nuoH nuoG nuoG nuoF nuoF nuoE nuoE nuoD nuoD nuoC nuoC nuoB nuoB nuoA nuoA BAG44639.1 BAG44639.1 cyt1 cyt1 rip1 rip1 BAG45150.1 BAG45150.1 BAG45328.1 BAG45328.1 BAG46961.1 BAG46961.1 BAG47362.1 BAG47362.1 ndhF ndhF coxB-3 coxB-3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dgkCOG1428: Deoxynucleoside kinases, Ralstonia solanacearum; KEGG, K00904. (228 aa)
nuoMCOG1008: NADH:ubiquinone oxidoreductase subunit 4 (chain M), Ralstonia solanacearum; KEGG, K00342. (509 aa)
nuoNNADH dehydrogenase I chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (491 aa)
nuoM-2COG1008: NADH:ubiquinone oxidoreductase subunit 4 (chain M), Ralstonia solanacearum; KEGG, K00342. (496 aa)
nuoLCOG1009: NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit, Ralstonia solanacearum; KEGG, K00341. (684 aa)
nuoKNADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (101 aa)
nuoJNADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (216 aa)
nuoINADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (162 aa)
nuoHNADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (355 aa)
nuoGNADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (776 aa)
nuoFNADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (436 aa)
nuoECOG1905: NADH:ubiquinone oxidoreductase 24 kD subunit, Ralstonia solanacearum; KEGG, K00334. (161 aa)
nuoDNADH dehydrogenase I chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (417 aa)
nuoCNADH dehydrogenase I chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (200 aa)
nuoBNADH dehydrogenase I chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (173 aa)
nuoANADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (119 aa)
BAG44639.1COG1145: Ferredoxin, Ralstonia solanacearum. (87 aa)
cyt1COG2857: Cytochrome c1, Ralstonia solanacearum; KEGG, K00413. (252 aa)
rip1Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (206 aa)
BAG45150.1COG0702: Predicted nucleoside-diphosphate-sugar epimerases, Mesorhizobium loti. (293 aa)
BAG45328.1COG0446: Uncharacterized NAD(FAD)-dependent dehydrogenases, Mesorhizobium loti. (115 aa)
BAG46961.1COG0702: Predicted nucleoside-diphosphate-sugar epimerases, Mesorhizobium loti. (288 aa)
BAG47362.1Uncharacterized NAD(FAD)-dependent dehydrogenase. (99 aa)
ndhFCOG1009: NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit, Vibrio cholerae; KEGG, K05577. (532 aa)
coxB-3COG1622: Heme/copper-type cytochrome/quinol oxidases, subunit 2, Sinorhizobium meliloti; KEGG, K02275. (339 aa)
Your Current Organism:
Burkholderia multivorans
NCBI taxonomy Id: 395019
Other names: B. multivorans ATCC 17616, Burkholderia multivorans ATCC 17616, Burkholderia multivorans str. ATCC 17616, Burkholderia multivorans strain ATCC 17616
Server load: low (32%) [HD]