STRINGSTRING
BAG47353.1 BAG47353.1 nuoN nuoN nuoM-2 nuoM-2 nuoL nuoL nuoK nuoK nuoJ nuoJ nuoI nuoI nuoG nuoG nuoF nuoF nuoD nuoD nuoC nuoC nuoB nuoB nuoA nuoA BAG45328.1 BAG45328.1 BAG47210.1 BAG47210.1 wrbA-3 wrbA-3 BAG47362.1 BAG47362.1 ndhF ndhF BAG42829.1 BAG42829.1 wrbA wrbA wrbA-2 wrbA-2 nuoM nuoM
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
BAG47353.1Uncharacterized NAD(FAD)-dependent dehydrogenase. (120 aa)
nuoNNADH dehydrogenase I chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (491 aa)
nuoM-2COG1008: NADH:ubiquinone oxidoreductase subunit 4 (chain M), Ralstonia solanacearum; KEGG, K00342. (496 aa)
nuoLCOG1009: NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit, Ralstonia solanacearum; KEGG, K00341. (684 aa)
nuoKNADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (101 aa)
nuoJNADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (216 aa)
nuoINADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (162 aa)
nuoGNADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (776 aa)
nuoFNADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (436 aa)
nuoDNADH dehydrogenase I chain D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (417 aa)
nuoCNADH dehydrogenase I chain C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (200 aa)
nuoBNADH dehydrogenase I chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (173 aa)
nuoANADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (119 aa)
BAG45328.1COG0446: Uncharacterized NAD(FAD)-dependent dehydrogenases, Mesorhizobium loti. (115 aa)
BAG47210.1Putative oxidoreductase; COG0655: Multimeric flavodoxin WrbA, Mycobacterium leprae. (163 aa)
wrbA-3Trp repressor-binding protein; COG0655: Multimeric flavodoxin WrbA, Salmonella typhimurium LT2; KEGG, K03809. (200 aa)
BAG47362.1Uncharacterized NAD(FAD)-dependent dehydrogenase. (99 aa)
ndhFCOG1009: NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit, Vibrio cholerae; KEGG, K05577. (532 aa)
BAG42829.1COG1894: NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit, Sinorhizobium meliloti; KEGG, K05903. (525 aa)
wrbATrp repressor-binding protein; COG0655: Multimeric flavodoxin WrbA, Ralstonia solanacearum; KEGG, K03809; Belongs to the WrbA family. (203 aa)
wrbA-2COG0655: Multimeric flavodoxin WrbA, Xylella fastidiosa 9a5c; WrbA protein. (189 aa)
nuoMCOG1008: NADH:ubiquinone oxidoreductase subunit 4 (chain M), Ralstonia solanacearum; KEGG, K00342. (509 aa)
Your Current Organism:
Burkholderia multivorans
NCBI taxonomy Id: 395019
Other names: B. multivorans ATCC 17616, Burkholderia multivorans ATCC 17616, Burkholderia multivorans str. ATCC 17616, Burkholderia multivorans strain ATCC 17616
Server load: low (14%) [HD]