Your Input: | |||||
TK90_0092 | PFAM: 4Fe-4S ferredoxin iron-sulfur binding domain protein; KEGG: tmz:Tmz1t_3621 4Fe-4S ferredoxin iron-sulfur binding domain protein. (82 aa) | ||||
TK90_0171 | PFAM: peptidase M16 domain protein; KEGG: noc:Noc_1933 peptidase M16-like; Belongs to the peptidase M16 family. (462 aa) | ||||
TK90_0172 | PFAM: peptidase M16 domain protein; KEGG: aeh:Mlg_2657 peptidase M16 domain-containing protein. (441 aa) | ||||
TK90_0687 | KEGG: vpa:VPA1144 hypothetical protein. (107 aa) | ||||
nuoA | NADH-ubiquinone/plastoquinone oxidoreductase chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (118 aa) | ||||
nuoB | NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (158 aa) | ||||
nuoC | NADH (or F420H2) dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (239 aa) | ||||
nuoD | NADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (417 aa) | ||||
TK90_0712 | TIGRFAM: NADH-quinone oxidoreductase, E subunit; PFAM: NADH dehydrogenase (ubiquinone) 24 kDa subunit; KEGG: hna:Hneap_1960 NADH-quinone oxidoreductase, E subunit. (176 aa) | ||||
TK90_0713 | NADH-quinone oxidoreductase, F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (426 aa) | ||||
TK90_0714 | NADH-quinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (798 aa) | ||||
nuoH | NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (354 aa) | ||||
nuoI | NADH-quinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (162 aa) | ||||
TK90_0717 | NADH-ubiquinone/plastoquinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (217 aa) | ||||
nuoK | NADH-ubiquinone oxidoreductase chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (101 aa) | ||||
TK90_0719 | KEGG: tmz:Tmz1t_1753 proton-translocating NADH-quinone oxidoreductase, chain L; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH/Ubiquinone/plastoquinone (complex I); NADH-Ubiquinone oxidoreductase (complex I) chain 5/L domain protein. (667 aa) | ||||
TK90_0720 | TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I); KEGG: aeh:Mlg_1958 proton-translocating NADH-quinone oxidoreductase, chain M. (504 aa) | ||||
nuoN | Proton-translocating NADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (482 aa) | ||||
TK90_0881 | PFAM: NADH/Ubiquinone/plastoquinone (complex I); NADH-Ubiquinone oxidoreductase (complex I) chain 5/L domain protein; KEGG: hna:Hneap_0909 NADH/ubiquinone/plastoquinone (complex I). (560 aa) | ||||
TK90_0892 | KEGG: net:Neut_1110 ubiquinol-cytochrome c reductase, iron-sulfur subunit. (187 aa) | ||||
TK90_2044 | PFAM: deoxynucleoside kinase; KEGG: ttu:TERTU_0568 deoxynucleoside kinase family protein. (216 aa) | ||||
TK90_2217 | PFAM: cytochrome c1; KEGG: noc:Noc_0297 cytochrome c1. (247 aa) | ||||
TK90_2218 | Cytochrome b/b6 domain protein; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (469 aa) | ||||
TK90_2219 | Ubiquinol-cytochrome c reductase, iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (200 aa) |