STRINGSTRING
RCOM_1353290 RCOM_1353290 RCOM_0681290 RCOM_0681290 RCOM_0803100 RCOM_0803100 RCOM_0610410 RCOM_0610410 RCOM_0001270 RCOM_0001270 RCOM_1186100 RCOM_1186100 RCOM_0786070 RCOM_0786070 RCOM_0867610 RCOM_0867610 RCOM_1674930 RCOM_1674930
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RCOM_1353290Cnd1 domain-containing protein. (1722 aa)
RCOM_0681290Condensin, putative. (1313 aa)
RCOM_0803100Beta-adaptin-like protein; Subunit of clathrin-associated adaptor protein complex that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. (848 aa)
RCOM_0610410Translational activator GCN1, putative. (2459 aa)
RCOM_0001270AP-3 complex subunit beta; Belongs to the adaptor complexes large subunit family. (1121 aa)
RCOM_1186100AP-2 complex subunit alpha; Subunit of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. (1018 aa)
RCOM_0786070Beta-adaptin-like protein; Subunit of clathrin-associated adaptor protein complex that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. (903 aa)
RCOM_0867610AP-4 complex subunit epsilon; AP-4 forms a non clathrin-associated coat on vesicles departing the trans-Golgi network (TGN) and may be involved in the targeting of proteins from the trans-Golgi network (TGN) to the endosomal-lysosomal system; Belongs to the adaptor complexes large subunit family. (981 aa)
RCOM_1674930Coatomer subunit gamma; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. (887 aa)
Your Current Organism:
Ricinus communis
NCBI taxonomy Id: 3988
Other names: R. communis, Ricinus communis L., Ricinus sanguineus, Ricinus sanguineus hort. ex Groenl., castor bean
Server load: low (14%) [HD]