STRINGSTRING
A0A0P0WRU0 A0A0P0WRU0 A0A0P0Y832 A0A0P0Y832 atpA atpA ATPA ATPA atpB atpB ATPB ATPB Q0JKB4_ORYSJ Q0JKB4_ORYSJ Q93W07_ORYSJ Q93W07_ORYSJ
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
A0A0P0WRU0Os06g0120732 protein. (168 aa)
A0A0P0Y832ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. (346 aa)
atpAATP synthase subunit alpha, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit; Belongs to the ATPase alpha/beta chains family. (507 aa)
ATPAATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (509 aa)
atpBATP synthase subunit beta, chloroplastic; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (498 aa)
ATPBATP synthase subunit beta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (552 aa)
Q0JKB4_ORYSJATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. (557 aa)
Q93W07_ORYSJVacuolar proton pump subunit B; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase; Belongs to the ATPase alpha/beta chains family. (488 aa)
Your Current Organism:
Oryza sativa Japonica
NCBI taxonomy Id: 39947
Other names: Japanese rice, Japonica rice, O. sativa Japonica Group, Oryza sativa (japonica cultivar-group), Oryza sativa Japonica Group, Oryza sativa subsp. japonica
Server load: low (16%) [HD]