STRINGSTRING
TRXM TRXM ndhF ndhF ndhG ndhG psaA psaA psbE psbE psbF psbF psbA psbA rpoB rpoB rpoC1 rpoC1 rbcL rbcL ndhA ndhA psbZ psbZ ycf3 ycf3 Q2QXB0_ORYSJ Q2QXB0_ORYSJ CHLI CHLI P0483G10.36 P0483G10.36 Act Act PRIN2 PRIN2 OsJ_07676 OsJ_07676 Q75HX0_ORYSJ Q75HX0_ORYSJ OsJ_15561 OsJ_15561 OsJ_27130 OsJ_27130 OsJ_04513 OsJ_04513
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TRXMThioredoxin M5, chloroplastic; Thiol-disulfide oxidoreductase probably involved in the redox regulation of chloroplastic enzymes. Required for chloroplast biogenesis and differentiation. Functions as an electron donor for plastidial 2-Cys peroxiredoxins and participates in hydrogen peroxide scavenging system in chloroplasts. Possesses reducing activity towards insulin disulfide bonds. (172 aa)
ndhFNAD(P)H-quinone oxidoreductase subunit 5, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (734 aa)
ndhGNAD(P)H-quinone oxidoreductase subunit 6, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (By similarity). (176 aa)
psaAPhotosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa)
psbECytochrome b559 subunit alpha; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (83 aa)
psbFCytochrome b559 subunit beta; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (39 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa)
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1075 aa)
rpoC1DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the RNA polymerase beta' chain family. RpoC1 subfamily. (682 aa)
rbcLRibulose bisphosphate carboxylase large chain; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site. (477 aa)
ndhANAD(P)H-quinone oxidoreductase subunit 1, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 1 family. (362 aa)
psbZPhotosystem II reaction center protein Z; Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna; Belongs to the PsbZ family. (62 aa)
ycf3Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits. (170 aa)
Q2QXB0_ORYSJcDNA clone:J013108L03, full insert sequence. (604 aa)
CHLIMagnesium-chelatase subunit ChlI, chloroplastic; Involved in chlorophyll biosynthesis. Catalyzes the insertion of magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX. The reaction takes place in two steps, with an ATP-dependent activation followed by an ATP-dependent chelation step. Belongs to the Mg-chelatase subunits D/I family. (415 aa)
P0483G10.36Thioredoxin Y, chloroplastic; Probable thiol-disulfide oxidoreductase that may participate in various redox reactions; Belongs to the thioredoxin family. Plant Y-type subfamily. (168 aa)
ActcDNA clone:001-035-C05, full insert sequence. (377 aa)
PRIN2Protein PLASTID REDOX INSENSITIVE 2, chloroplastic; Required for the activity of the plastid-encoded RNA polymerase (PEP) and full expression of genes transcribed by PEP. (172 aa)
OsJ_07676Thioredoxin M1, chloroplastic; Probable thiol-disulfide oxidoreductase that may be involved in the redox regulation of chloroplastic enzymes; Belongs to the thioredoxin family. Plant M-type subfamily. (173 aa)
Q75HX0_ORYSJcDNA clone:J023104C20, full insert sequence. (376 aa)
OsJ_15561Thioredoxin M2, chloroplastic; Probable thiol-disulfide oxidoreductase that may be involved in the redox regulation of chloroplastic enzymes; Belongs to the thioredoxin family. Plant M-type subfamily. (180 aa)
OsJ_27130Thioredoxin-like protein CITRX, chloroplastic; Probable thiol-disulfide oxidoreductase that may play a role in proper chloroplast development. May be involved in cell death and defense responses; Belongs to the thioredoxin family. Plant CITRX-type subfamily. (189 aa)
OsJ_04513Thioredoxin F, chloroplastic; Thiol-disulfide oxidoreductase involved in the redox regulation of enzymes of both reductive pentose phosphate pathway (Calvin-Benson cycle) and oxidative pentose phosphate pathway. Belongs to the thioredoxin family. Plant F-type subfamily. (187 aa)
Your Current Organism:
Oryza sativa Japonica
NCBI taxonomy Id: 39947
Other names: Japanese rice, Japonica rice, O. sativa Japonica Group, Oryza sativa (japonica cultivar-group), Oryza sativa Japonica Group, Oryza sativa subsp. japonica
Server load: low (24%) [HD]