STRINGSTRING
ppa ppa atpG atpG atpA atpA atpH atpH atpF atpF atpE atpE atpB atpB AKD02802.1 AKD02802.1 AKD03347.1 AKD03347.1 atpD atpD AKD03464.1 AKD03464.1 AKD03772.1 AKD03772.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ppaInorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (187 aa)
atpGATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (296 aa)
atpAATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (526 aa)
atpHATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (185 aa)
atpFATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (164 aa)
atpEHypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (85 aa)
atpBATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (338 aa)
AKD02802.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (1003 aa)
AKD03347.1Inorganic pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (194 aa)
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (503 aa)
AKD03464.1ATP synthase subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa)
AKD03772.1WbqC-like family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa)
Your Current Organism:
Pontibacter korlensis
NCBI taxonomy Id: 400092
Other names: CCTCC AB 206081, NRRL B-51097, P. korlensis, Pontibacter korlensis Zhang et al. 2008, Pontibacter sp. z1, Pontibacter sp. z2, strain X14-1
Server load: low (18%) [HD]