node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AJE39223.1 | AJE39973.1 | SNOD_03665 | SNOD_07980 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.795 |
AJE39223.1 | AJE40173.1 | SNOD_03665 | SNOD_09115 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | FeS-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.932 |
AJE39223.1 | AJE40338.1 | SNOD_03665 | SNOD_10010 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase cytochrome b subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJE39223.1 | AJE40339.1 | SNOD_03665 | SNOD_10015 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome C reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
AJE39223.1 | AJE40340.1 | SNOD_03665 | SNOD_10020 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.997 |
AJE39223.1 | AJE40341.1 | SNOD_03665 | SNOD_10025 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome B561; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJE39223.1 | AJE40344.1 | SNOD_03665 | SNOD_10040 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit IV; Part of cytochrome c oxidase, its function is unknown. Belongs to the cytochrome c oxidase bacterial subunit CtaF family. | 0.996 |
AJE39223.1 | AJE40345.1 | SNOD_03665 | SNOD_10045 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.794 |
AJE39223.1 | AJE40346.1 | SNOD_03665 | SNOD_10050 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJE39223.1 | AJE41292.1 | SNOD_03665 | SNOD_15535 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.903 |
AJE39223.1 | AJE41491.1 | SNOD_03665 | SNOD_16795 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Lipoprotein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.914 |
AJE39973.1 | AJE39223.1 | SNOD_07980 | SNOD_03665 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.795 |
AJE39973.1 | AJE40173.1 | SNOD_07980 | SNOD_09115 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | FeS-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.932 |
AJE39973.1 | AJE40338.1 | SNOD_07980 | SNOD_10010 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase cytochrome b subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJE39973.1 | AJE40339.1 | SNOD_07980 | SNOD_10015 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome C reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
AJE39973.1 | AJE40340.1 | SNOD_07980 | SNOD_10020 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.997 |
AJE39973.1 | AJE40341.1 | SNOD_07980 | SNOD_10025 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome B561; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJE39973.1 | AJE40344.1 | SNOD_07980 | SNOD_10040 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit IV; Part of cytochrome c oxidase, its function is unknown. Belongs to the cytochrome c oxidase bacterial subunit CtaF family. | 0.996 |
AJE39973.1 | AJE40346.1 | SNOD_07980 | SNOD_10050 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJE39973.1 | AJE41292.1 | SNOD_07980 | SNOD_15535 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.903 |