STRINGSTRING
psbC psbC psaB psaB psaA psaA psbB psbB psbH psbH HCR9-0 HCR9-0 NCED1 NCED1 A0A3Q7EQU5 A0A3Q7EQU5 CYP707A2 CYP707A2 Actin Actin CrtR-b1 CrtR-b1 psbA psbA psbD psbD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psbCPhotosystem II CP43 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (473 aa)
psaBPhotosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (734 aa)
psaAPhotosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa)
psbBPhotosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (508 aa)
psbHPhotosystem II reaction center protein H; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbH family. (73 aa)
HCR9-0Receptor-like protein Cf-9 homolog; At the opposite of its homolog Cf-9 found in S.pimpinellifolium, was not able to confer resistance to the fungal pathogen C.fulvum; Belongs to the RLP family. (845 aa)
NCED19-cis-epoxycarotenoid dioxygenase NCED1, chloroplastic; Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid (ABA) biosynthesis from carotenoids. Required for ABA accumulation upon drought. Required for ABA-mediated regulation of anther/pollen development, including metabolism, cell wall modification and transcription level. Positive regulator of fruit ripening involved in the biosynthesis of abscisic acid (ABA); initiates ABA biosynthesis at the onset of fruit ripening. Modulates the degree of pigmentation and carotenoid composition a [...] (605 aa)
A0A3Q7EQU5Uncharacterized protein. (377 aa)
CYP707A2Abscisic acid 8'-hydroxylase CYP707A2; Negative regulator of fruit ripening involved in the oxidative degradation of abscisic acid (ABA). (469 aa)
ActinUncharacterized protein. (377 aa)
CrtR-b1Beta-carotene hydroxylase; Belongs to the sterol desaturase family. (309 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa)
psbDPhotosystem II D2 protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. (353 aa)
Your Current Organism:
Solanum lycopersicum
NCBI taxonomy Id: 4081
Other names: Lycopersicon esculentum, Lycopersicon esculentum Mill., Lycopersicon esculentum var. esculentum, S. lycopersicum, Solanum esculentum, Solanum esculentum Dunal, Solanum lycopersicum L., Solanum lycopersicum var. humboldtii, tomato
Server load: low (36%) [HD]