Your Input: | |||||
atpA | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. (507 aa) | ||||
atpF | ATP synthase CF0 B subunit; Belongs to the ATPase B chain family. (184 aa) | ||||
atpH | ATP synthase CF0 C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa) | ||||
atpI | ATP synthase CF0 A subunit. (247 aa) | ||||
rps2 | Ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family. (236 aa) | ||||
rpoC2 | RNA polymerase beta'' subunit. (1388 aa) | ||||
rpoC1 | DNA-directed RNA polymerase subunit gamma; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the RNA polymerase beta' chain family. RpoC1 subfamily. (688 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1070 aa) | ||||
petN | Cytochrome b6-f complex subunit 8; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (29 aa) | ||||
psbM | Photosystem II reaction center protein M; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (34 aa) | ||||
psbD | Photosystem II D2 protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex. (353 aa) | ||||
psbZ | Photosystem II reaction center protein Z; Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna; Belongs to the PsbZ family. (62 aa) | ||||
psaB | Photosystem I P700 chlorophyll a apoprotein A2; Belongs to the PsaA/PsaB family. (734 aa) | ||||
rps12-2 | Ribosomal protein S12; Belongs to the universal ribosomal protein uS12 family. (123 aa) | ||||
rpl16 | Ribosomal protein L16; Belongs to the universal ribosomal protein uL16 family. (171 aa) | ||||
rps12 | Ribosomal protein S12; Belongs to the universal ribosomal protein uS12 family. (125 aa) | ||||
psbA | Photosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa) | ||||
matK | Maturase K; Usually encoded in the trnK tRNA gene intron. Probably assists in splicing its own and other chloroplast group II introns. Belongs to the intron maturase 2 family. MatK subfamily. (509 aa) | ||||
rps16 | Ribosomal protein S16. (85 aa) | ||||
LOC107815813 | Cytochrome b. (299 aa) | ||||
rpl2-2 | Ribosomal protein L2. (331 aa) | ||||
Ntabcob | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis. (393 aa) | ||||
infA | Translation initiation factor IF-1, chloroplastic. (156 aa) | ||||
ycf3 | Photosystem I assembly protein Ycf3; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits. (168 aa) | ||||
ndhC | NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (120 aa) | ||||
rbcL | Ribulose bisphosphate carboxylase large chain; RuBisCO catalyzes two reactions: the carboxylation of D- ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate. Both reactions occur simultaneously and in competition at the same active site; Belongs to the RuBisCO large chain family. Type I subfamily. (477 aa) | ||||
psaI | Photosystem I reaction center subunit VIII; May help in the organization of the PsaL subunit. Belongs to the PsaI family. (36 aa) | ||||
ycf4 | Photosystem I assembly protein Ycf4; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family. (184 aa) | ||||
cemA | Envelope membrane protein; May be involved in proton extrusion. Indirectly promotes efficient inorganic carbon uptake. (229 aa) | ||||
psbJ | Photosystem II reaction center protein J; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (40 aa) | ||||
psbL | Photosystem II reaction center protein L; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (38 aa) | ||||
psbE | Cytochrome b559 subunit alpha; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (83 aa) | ||||
petL | Cytochrome b6-f complex subunit 6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetL is important for photoautotrophic growth as well as for electron transfer efficiency and stability of the cytochrome b6-f complex. (31 aa) | ||||
clpP | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (196 aa) | ||||
petB | Cytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (215 aa) | ||||
petD | Cytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (160 aa) | ||||
rps11 | Ribosomal protein S11; Belongs to the universal ribosomal protein uS11 family. (138 aa) | ||||
rpl16-2 | Ribosomal protein L16; Belongs to the universal ribosomal protein uL16 family. (134 aa) | ||||
rps19-2 | Ribosomal protein S19; Belongs to the universal ribosomal protein uS19 family. (92 aa) | ||||
ndhB | NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (510 aa) | ||||
rps7 | Ribosomal protein S7; Belongs to the universal ribosomal protein uS7 family. (155 aa) | ||||
ndhF | NADH dehydrogenase subunit 5; Belongs to the complex I subunit 5 family. (740 aa) | ||||
rpl32 | Ribosomal protein L32. (55 aa) | ||||
ccsA | Cytochrome c biogenesis protein CcsA; Required during biogenesis of c-type cytochromes (cytochrome c6 and cytochrome f) at the step of heme attachment. (313 aa) | ||||
psaC | Photosystem I iron-sulfur center. (81 aa) | ||||
ndhA | NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (363 aa) | ||||
ycf1 | Protein TIC 214. (1902 aa) | ||||
ycf2 | Protein Ycf2; Probable ATPase of unknown function. Its presence in a non- photosynthetic plant (Epifagus virginiana) and experiments in tobacco indicate that it has an essential function which is probably not related to photosynthesis; Belongs to the Ycf2 family. (2280 aa) | ||||
rps19 | Ribosomal protein S19; Belongs to the universal ribosomal protein uS19 family. (94 aa) |