Your Input: | |||||
trpS | tryptophan--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (355 aa) | ||||
cysC | Adenylyl-sulfate kinase; Catalyzes the synthesis of activated sulfate. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (644 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
glyQ | glycine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (308 aa) | ||||
glyS | glycine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (780 aa) | ||||
rplI | 50S ribosomal protein L9; Binds to the 23S rRNA. (189 aa) | ||||
rpsR | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (82 aa) | ||||
rpsF | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (150 aa) | ||||
ANG98330.1 | Transcription elongation factor; Activates RNA polymerase to cleave back-tracked RNA during elongational pausing; Derived by automated computational analysis using gene prediction method: Protein Homology. (155 aa) | ||||
ANG95463.1 | Amidase; Catalyzes the hydrolysis of a monocarboxylic acid amid to form a monocarboxylate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the amidase family. (441 aa) | ||||
ANG95517.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (222 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (158 aa) | ||||
era | GTPase Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (311 aa) | ||||
cysS | cysteine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (505 aa) | ||||
ANG95558.1 | Glycosyl transferase family 1; Derived by automated computational analysis using gene prediction method: Protein Homology. (627 aa) | ||||
aspS | aspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (595 aa) | ||||
rpsI | 30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (157 aa) | ||||
rplM | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (154 aa) | ||||
proS | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro); Belongs to the class-II aminoacyl-tRNA synthetase family. ProS type 2 subfamily. (440 aa) | ||||
rpsD | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (205 aa) | ||||
argS | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (585 aa) | ||||
serS | serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (427 aa) | ||||
gatB | aspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (500 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (321 aa) | ||||
tyrS | tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (417 aa) | ||||
valS | valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (910 aa) | ||||
ANG95783.1 | Glycosyl transferase family 1; Derived by automated computational analysis using gene prediction method: Protein Homology. (541 aa) | ||||
metG | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 2B subfamily. (515 aa) | ||||
gltX | glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (457 aa) | ||||
ANG95867.1 | NAD(FAD)-utilizing dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (401 aa) | ||||
ANG95877.1 | Ala-tRNA(Pro) hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (247 aa) | ||||
thrS | threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (656 aa) | ||||
gltX-2 | glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (473 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (186 aa) | ||||
tsf | Translation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (305 aa) | ||||
rpsB | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (256 aa) | ||||
alaS | alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (885 aa) | ||||
rplQ | 50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology. (142 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (122 aa) | ||||
rplO | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (156 aa) | ||||
rpmD | 50S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology. (65 aa) | ||||
rpsE | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (186 aa) | ||||
rplR | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (120 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa) | ||||
rpsH | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa) | ||||
rpsN | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (185 aa) | ||||
rplX | 50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (101 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (80 aa) | ||||
rpmC | 50S ribosomal protein L29; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uL29 family. (66 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa) | ||||
rpsC | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (236 aa) | ||||
rplV | 50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (129 aa) | ||||
rpsS | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa) | ||||
rplB | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (277 aa) | ||||
rplW | 50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (97 aa) | ||||
rplD | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (206 aa) | ||||
rplC | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (240 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa) | ||||
ANG96048.1 | Translation elongation factor Tu; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
fusA | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (694 aa) | ||||
rpsG | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
rpsL | 30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (123 aa) | ||||
rplL | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (124 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (172 aa) | ||||
rplA | 50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (233 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa) | ||||
ANG96061.1 | Translation elongation factor Tu; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
ANG96077.1 | ABC transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (506 aa) | ||||
ANG96232.1 | Energy-dependent translational throttle protein EttA; Derived by automated computational analysis using gene prediction method: Protein Homology. (549 aa) | ||||
csaA | tRNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (115 aa) | ||||
rplY | 50S ribosomal protein L25/general stress protein Ctc; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (206 aa) | ||||
pth | aminoacyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (250 aa) | ||||
ANG96340.1 | Methyltransferase type 11; Derived by automated computational analysis using gene prediction method: Protein Homology. (322 aa) | ||||
rpsU | 30S ribosomal protein S21; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS21 family. (76 aa) | ||||
rpmH | 50S ribosomal protein L34; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
fmt | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (306 aa) | ||||
def | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (175 aa) | ||||
lepA | Elongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (602 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (525 aa) | ||||
ANG98436.1 | tRNA glutamyl-Q synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (289 aa) | ||||
efp | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (186 aa) | ||||
rpmE | 50S ribosomal protein L31; Binds the 23S rRNA; Belongs to the bacterial ribosomal protein bL31 family. Type A subfamily. (73 aa) | ||||
rpmJ | 50S ribosomal protein L36; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL36 family. (41 aa) | ||||
ANG96596.1 | Elongation factor 3; Derived by automated computational analysis using gene prediction method: Protein Homology. (604 aa) | ||||
rpmF | 50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family. (59 aa) | ||||
leuS | leucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (877 aa) | ||||
rpsP | 30S ribosomal protein S16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS16 family. (138 aa) | ||||
rpmA | 50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family. (89 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (142 aa) | ||||
ileS | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (968 aa) | ||||
hisS | histidine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (502 aa) | ||||
ANG98473.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa) | ||||
ANG96811.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa) | ||||
typA | GTP-binding protein TypA; Derived by automated computational analysis using gene prediction method: Protein Homology. (607 aa) | ||||
def-2 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. Belongs to the polypeptide deformylase family. (164 aa) | ||||
ANG97058.1 | Amidase; Catalyzes the hydrolysis of a monocarboxylic acid amid to form a monocarboxylate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the amidase family. (395 aa) | ||||
ANG97314.1 | Nucleoside diphosphate kinase regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (137 aa) | ||||
rpmG | 50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family. (55 aa) | ||||
gatC | asparaginyl/glutamyl-tRNA amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (95 aa) | ||||
gatA | aspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (493 aa) | ||||
lysS | lysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (551 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (359 aa) | ||||
ANG98019.1 | ABC transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (525 aa) | ||||
ANG98020.1 | Hypothetical protein; Participates in the translocation of lipoproteins from the inner membrane to the outer membrane. Only forms a complex with a lipoprotein if the residue after the N-terminal Cys is not an aspartate (The Asp acts as a targeting signal to indicate that the lipoprotein should stay in the inner membrane). (230 aa) | ||||
rplS | Hypothetical protein; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (145 aa) | ||||
ANG98050.1 | ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (387 aa) | ||||
ANG98061.1 | 50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology. (97 aa) | ||||
ANG98130.1 | Peptide chain release factor I; Derived by automated computational analysis using gene prediction method: Protein Homology. (145 aa) | ||||
infC | Translation initiation factor IF-3; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IF-3 family. (132 aa) | ||||
rpmI | 50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family. (66 aa) | ||||
rplT | 50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (134 aa) | ||||
pheS | phenylalanine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (369 aa) | ||||
pheT | phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (804 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (970 aa) | ||||
rpsO | 30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (88 aa) | ||||
def-3 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (170 aa) | ||||
rpsA | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (566 aa) | ||||
ANG99106.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (461 aa) | ||||
ANG99238.1 | Transcription elongation factor; Derived by automated computational analysis using gene prediction method: Protein Homology. (165 aa) |