STRINGSTRING
atpH atpH psbB psbB atpI atpI rpl20 rpl20 PSBA PSBA Rpl2 Rpl2 PSBA-2 PSBA-2 ATPI ATPI Rps12 Rps12 Rps12-2 Rps12-2 TRNH TRNH PSBB PSBB PSBB-2 PSBB-2 PSBB-3 PSBB-3 psbA psbA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpHPutative ATPase, F0 complex, subunit C, V-ATPase proteolipid subunit C-like domain protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (81 aa)
psbBPhotosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (508 aa)
atpIPutative ATPase, F0 complex, subunit A. (247 aa)
rpl2050S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (126 aa)
PSBAPhotosystem II protein D1; Belongs to the reaction center PufL/M/PsbA/D family. (322 aa)
Rpl2Putative ribosomal protein L2, Ribosomal protein L25/L23. (290 aa)
PSBA-2Photosystem II protein D1; Belongs to the reaction center PufL/M/PsbA/D family. (340 aa)
ATPIPutative ATP synthase subunit a protein. (215 aa)
Rps12NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (244 aa)
Rps12-2Putative ribosomal protein S12/S23. (142 aa)
TRNHPutative tropinone reductase. (275 aa)
PSBBPutative photosystem II CP47 reaction center protein. (415 aa)
PSBB-2Photosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. (487 aa)
PSBB-3Photosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. (492 aa)
psbAPhotosystem II protein D1; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (353 aa)
Your Current Organism:
Helianthus annuus
NCBI taxonomy Id: 4232
Other names: H. annuus, Helianthus annuus L., common sunflower
Server load: low (14%) [HD]