Your Input: | |||||
atpC | ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (135 aa) | ||||
AQS86154.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (306 aa) | ||||
serS | serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (458 aa) | ||||
AQS83409.1 | ABC transporter substrate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (321 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (323 aa) | ||||
prs | Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (310 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (488 aa) | ||||
mtnP | 5'-methylthioadenosine phosphorylase; Catalyzes the reversible phosphorylation of S-methyl-5'- thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate. Involved in the breakdown of MTA, a major by-product of polyamine biosynthesis. Responsible for the first step in the methionine salvage pathway after MTA has been generated from S-adenosylmethionine. Has broad substrate specificity with 6-aminopurine nucleosides as preferred substrates; Belongs to the PNP/MTAP phosphorylase family. MTAP subfamily. (298 aa) | ||||
hemH | Ferrochelatase; Catalyzes the ferrous insertion into protoporphyrin IX. Belongs to the ferrochelatase family. (346 aa) | ||||
AQS83520.1 | Cobalamin biosynthesis protein CobW; Derived by automated computational analysis using gene prediction method: Protein Homology. (353 aa) | ||||
AQS83521.1 | Cobaltochelatase subunit CobN; Derived by automated computational analysis using gene prediction method: Protein Homology. (1116 aa) | ||||
cbiA | Cobyrinic acid a,c-diamide synthase; Catalyzes the ATP-dependent amidation of the two carboxylate groups at positions a and c of cobyrinate, using either L-glutamine or ammonia as the nitrogen source; Belongs to the CobB/CbiA family. (440 aa) | ||||
AQS83524.1 | cob(I)yrinic acid a,c-diamide adenosyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids. (202 aa) | ||||
cobQ | Cobyric acid synthase CobQ; Catalyzes amidations at positions B, D, E, and G on adenosylcobyrinic A,C-diamide. NH(2) groups are provided by glutamine, and one molecule of ATP is hydrogenolyzed for each amidation. Belongs to the CobB/CobQ family. CobQ subfamily. (488 aa) | ||||
AQS83526.1 | Threonine-phosphate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa) | ||||
AQS83532.1 | Riboflavin biosynthesis protein RibF; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (314 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1390 aa) | ||||
rpoC | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1393 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (222 aa) | ||||
rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (339 aa) | ||||
trpA | Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (271 aa) | ||||
trpB | Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (407 aa) | ||||
hldE | Bifunctional heptose 7-phosphate kinase/heptose 1-phosphate adenyltransferase; Catalyzes the ADP transfer from ATP to D-glycero-beta-D- manno-heptose 1-phosphate, yielding ADP-D-glycero-beta-D-manno-heptose. In the N-terminal section; belongs to the carbohydrate kinase PfkB family. (479 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (216 aa) | ||||
rpoH | RNA polymerase subunit sigma-70; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (296 aa) | ||||
AQS83616.1 | Adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa) | ||||
AQS83621.1 | Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa) | ||||
fliI | Flagellar protein export ATPase FliI; Involved in type III protein export during flagellum assembly; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa) | ||||
AQS83647.1 | Dihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (357 aa) | ||||
AQS83661.1 | Bifunctional folylpolyglutamate synthase/dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (448 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (307 aa) | ||||
nadE | NAD(+) synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. (679 aa) | ||||
AQS83664.1 | Molybdopterin molybdenumtransferase MoeA; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family. (401 aa) | ||||
AQS83673.1 | Aminobenzoate synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa) | ||||
AQS83683.1 | Omega amino acid--pyruvate aminotransferase; Catalyzes the formation of pyruvate and beta-alanine from L-alanine and 3-oxopropanoate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (449 aa) | ||||
ctaA | Heme A synthase; Catalyzes the oxidation of the C8 methyl side group on heme O porphyrin ring into a formyl group; Belongs to the COX15/CtaA family. Type 2 subfamily. (349 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (174 aa) | ||||
AQS83741.1 | Gluconolaconase; Derived by automated computational analysis using gene prediction method: Protein Homology. (344 aa) | ||||
AQS83753.1 | Catalyzes the formation of 5-aminolevulinate from succinyl-CoA and glycine; Derived by automated computational analysis using gene prediction method: Protein Homology. (422 aa) | ||||
AQS86202.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0301 (AlgH) family. (200 aa) | ||||
purU | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (292 aa) | ||||
folD-2 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (296 aa) | ||||
cobD | Cobalamin biosynthesis protein; Converts cobyric acid to cobinamide by the addition of aminopropanol on the F carboxylic group. (330 aa) | ||||
AQS83868.1 | Derived by automated computational analysis using gene prediction method: Protein Homology. (348 aa) | ||||
AQS83869.1 | Riboflavin synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (200 aa) | ||||
ribB | Bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the GTP cyclohydrolase II family. In the N-terminal section; belongs to the DHBP synthase family. (425 aa) | ||||
ribH | 6,7-dimethyl-8-ribityllumazine synthase; Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2- butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin. (160 aa) | ||||
AQS83896.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (316 aa) | ||||
AQS83907.1 | Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (632 aa) | ||||
AQS83996.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (571 aa) | ||||
ppnK | NAD kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (268 aa) | ||||
AQS84036.1 | Hypothetical protein; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (481 aa) | ||||
AQS86248.1 | Nicotinate phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa) | ||||
AQS84079.1 | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (449 aa) | ||||
purC | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (254 aa) | ||||
purS | Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (80 aa) | ||||
purQ | Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (233 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (736 aa) | ||||
AQS84085.1 | ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the BolA/IbaG family. (76 aa) | ||||
purH | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (526 aa) | ||||
AQS86255.1 | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (447 aa) | ||||
AQS84099.1 | Molybdenum cofactor biosynthesis protein; May be involved in the biosynthesis of molybdopterin. Belongs to the MoaB/Mog family. (176 aa) | ||||
hemF | Coproporphyrinogen III oxidase; Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen- IX. (309 aa) | ||||
queG | Epoxyqueuosine reductase; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr); Belongs to the QueG family. (372 aa) | ||||
guaA | GMP synthetase; Catalyzes the synthesis of GMP from XMP. (533 aa) | ||||
AQS86114.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (536 aa) | ||||
AQS86105.1 | 2,5-diketo-D-gluconic acid reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (278 aa) | ||||
AQS86104.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa) | ||||
AQS86095.1 | 8-amino-7-oxononanoate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (398 aa) | ||||
AQS86049.1 | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (523 aa) | ||||
AQS86033.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (146 aa) | ||||
hemE | Uroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III. (335 aa) | ||||
thiC | Phosphomethylpyrimidine synthase ThiC; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. (612 aa) | ||||
queE | 7-carboxy-7-deazaguanine synthase; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7- deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds. (211 aa) | ||||
queC | 7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (249 aa) | ||||
AQS85996.1 | 6-pyruvoyl tetrahydropterin synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (174 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (235 aa) | ||||
trpF | N-(5'-phosphoribosyl)anthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (211 aa) | ||||
AQS85957.1 | Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily. (503 aa) | ||||
AQS85950.1 | DNA polymerase III subunit chi; Derived by automated computational analysis using gene prediction method: Protein Homology. (148 aa) | ||||
AQS85895.1 | RNA polymerase subunit sigma-24; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. (176 aa) | ||||
AQS85876.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (186 aa) | ||||
tgt | tRNA-guanine(34) transglycosylase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form [...] (387 aa) | ||||
queA | S-adenosylmethionine:tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (352 aa) | ||||
AQS86546.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. (150 aa) | ||||
AQS85837.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the sigma-70 factor family. ECF subfamily. (165 aa) | ||||
AQS85829.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the sigma-70 factor family. ECF subfamily. (169 aa) | ||||
AQS85816.1 | An AccC homodimer forms the biotin carboxylase subunit of the acetyl CoA carboxylase, an enzyme that catalyzes the formation of malonyl-CoA, which in turn controls the rate of fatty acid metabolism; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa) | ||||
AQS85798.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (272 aa) | ||||
AQS85790.1 | Cobalamin biosynthesis protein CobW; Derived by automated computational analysis using gene prediction method: Protein Homology. (333 aa) | ||||
AQS85742.1 | dTDP-4-dehydrorhamnose 3,5-epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (186 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (431 aa) | ||||
nadX | Hypothetical protein; Specifically catalyzes the NAD or NADP-dependent dehydrogenation of L-aspartate to iminoaspartate. (271 aa) | ||||
purA | Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (429 aa) | ||||
AQS85623.1 | Creatininase; Derived by automated computational analysis using gene prediction method: Protein Homology. (268 aa) | ||||
nusG | Transcription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (176 aa) | ||||
atpH | ATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (196 aa) | ||||
atpA | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (511 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (293 aa) | ||||
atpD | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (492 aa) | ||||
AQS84105.1 | Uroporphyrinogen III synthase HEM4; Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III. (244 aa) | ||||
hemC | Hydroxymethylbilane synthase; Tetrapolymerization of the monopyrrole PBG into the hydroxymethylbilane pre-uroporphyrinogen in several discrete steps. Belongs to the HMBS family. (356 aa) | ||||
ndk | Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (140 aa) | ||||
AQS84165.1 | Isopropylmalate/homocitrate/citramalate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (136 aa) | ||||
AQS84184.1 | DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (1139 aa) | ||||
AQS84217.1 | UDP-glucose 6-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (437 aa) | ||||
AQS84230.1 | Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology. (440 aa) | ||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (543 aa) | ||||
trpE | Anthranilate synthase; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentrations of ammonia. (507 aa) | ||||
thiL | Thiamine-phosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1; Belongs to the thiamine-monophosphate kinase family. (336 aa) | ||||
AQS84250.1 | Transcription antitermination factor NusB; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (201 aa) | ||||
pdxA | 4-hydroxythreonine-4-phosphate dehydrogenase; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP). (342 aa) | ||||
pdxJ | Pyridoxine 5'-phosphate synthase; Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino- 2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate. (243 aa) | ||||
dnaG | DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. Belongs to the DnaG primase family. (627 aa) | ||||
rpoD | RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (664 aa) | ||||
pdxH | Pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). (212 aa) | ||||
priA | Primosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (746 aa) | ||||
thyX | FAD-dependent thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (302 aa) | ||||
polA | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (930 aa) | ||||
nadA | Quinolinate synthetase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (326 aa) | ||||
AQS84409.1 | Nicotinate-nucleotide diphosphorylase (carboxylating); Catalyzes the formation of pyridine-2,3-dicarboxylate and 5-phospho-alpha-D-ribose 1-diphosphate from nictinate D-ribonucleotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. (284 aa) | ||||
AQS84422.1 | Protein CapI; Derived by automated computational analysis using gene prediction method: Protein Homology. (322 aa) | ||||
AQS84426.1 | Molybdopterin biosynthesis enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (214 aa) | ||||
bioB | Biotin synthase BioB; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism; Belongs to the radical SAM superfamily. Biotin synthase family. (335 aa) | ||||
pqqE | Pyrroloquinoline quinone biosynthesis protein PqqE; Catalyzes the cross-linking of a glutamate residue and a tyrosine residue in the PqqA protein as part of the biosynthesis of pyrroloquinoline quinone (PQQ). (362 aa) | ||||
AQS84452.1 | Pyrroloquinoline quinone biosynthesis protein PqqD; Derived by automated computational analysis using gene prediction method: Protein Homology. (98 aa) | ||||
pqqC | Pyrroloquinoline quinone biosynthesis protein C; Ring cyclization and eight-electron oxidation of 3a-(2-amino- 2-carboxyethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydroquinoline-7,9- dicarboxylic-acid to PQQ. (243 aa) | ||||
pqqB | Pyrroloquinoline quinone biosynthesis protein B; May be involved in the transport of PQQ or its precursor to the periplasm; Belongs to the PqqB family. (307 aa) | ||||
AQS84470.1 | ATP-dependent DNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (530 aa) | ||||
AQS84529.1 | Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (651 aa) | ||||
AQS84546.1 | 3-deoxy-manno-octulosonate cytidylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the KdsB family. (247 aa) | ||||
proB | Glutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (375 aa) | ||||
lipA | Lipoyl synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (341 aa) | ||||
AQS84565.1 | Sirohydrochlorin ferrochelatase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. Belongs to the precorrin methyltransferase family. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (468 aa) | ||||
guaB | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (492 aa) | ||||
trpD | Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (362 aa) | ||||
trpC | Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family. (285 aa) | ||||
pdhA | Pyruvate dehydrogenase (acetyl-transferring) E1 component subunit alpha; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (336 aa) | ||||
AQS84571.1 | Pyruvate dehydrogenase complex E1 component subunit beta; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. (452 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (208 aa) | ||||
purM | Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (365 aa) | ||||
cmk | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (234 aa) | ||||
AQS84661.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (66 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (249 aa) | ||||
atpE | ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (74 aa) | ||||
AQS84667.1 | ATP synthase F0 subunit B; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ATPase B chain family. (204 aa) | ||||
atpF | ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (169 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (200 aa) | ||||
dnaQ | DNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. (231 aa) | ||||
moaA | Cyclic pyranopterin phosphate synthase MoaA; Catalyzes the cyclization of GTP to (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate. (339 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (219 aa) | ||||
AQS84774.1 | DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa) | ||||
tmk | Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (224 aa) | ||||
purE | N5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (152 aa) | ||||
purK | 5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (358 aa) | ||||
gpt | Xanthine-guanine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (161 aa) | ||||
AQS84810.1 | BolA family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the BolA/IbaG family. (102 aa) | ||||
AQS84813.1 | Cobaltochelatase subunit CobT; Derived by automated computational analysis using gene prediction method: Protein Homology. (634 aa) | ||||
glmU | Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (451 aa) | ||||
AQS86364.1 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. (194 aa) | ||||
AQS84832.1 | Thiamine-phosphate pyrophosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (223 aa) | ||||
AQS84833.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (509 aa) | ||||
AQS84854.1 | Molybdopterin-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (251 aa) | ||||
accA | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (323 aa) | ||||
AQS84873.1 | Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. (343 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (251 aa) | ||||
dcd | Deoxycytidine triphosphate deaminase; Catalyzes the deamination of dCTP to dUTP. (184 aa) | ||||
murA | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (420 aa) | ||||
apaG | Co2+/Mg2+ efflux protein ApaG; Derived by automated computational analysis using gene prediction method: Protein Homology. (152 aa) | ||||
folE | GTP cyclohydrolase I; Derived by automated computational analysis using gene prediction method: Protein Homology. (203 aa) | ||||
AQS84945.1 | Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology. (439 aa) | ||||
pyrB | Aspartate carbamoyltransferase catalytic subunit; Catalyzes the transfer of the carbamoyl moiety from carbamoyl phosphate to L- aspartate in pyrimidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (319 aa) | ||||
AQS84955.1 | Thiamine biosynthesis protein ThiS; Derived by automated computational analysis using gene prediction method: Protein Homology. (65 aa) | ||||
thiG | Thiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S. (256 aa) | ||||
AQS84957.1 | Catalyzes the formation of thiamine monophosphate from 4-methyl-5-(beta-hydroxyethyl)-thiazole monophosphate and 4-amino-5-hydroxymethyl pyrimidine pyrophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa) | ||||
fdhD | Formate dehydrogenase family accessory protein FdhD; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Belongs to the FdhD family. (268 aa) | ||||
AQS84990.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (138 aa) | ||||
AQS84991.1 | Molybdopterin synthase sulfur carrier subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (80 aa) | ||||
mobA | Molybdenum cofactor guanylyltransferase; Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor; Belongs to the MobA family. (202 aa) | ||||
moaA-2 | Cyclic pyranopterin phosphate synthase MoaA; Catalyzes the cyclization of GTP to (8S)-3',8-cyclo-7,8- dihydroguanosine 5'-triphosphate. (357 aa) | ||||
AQS84994.1 | Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (767 aa) | ||||
AQS84998.1 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (374 aa) | ||||
AQS85002.1 | Phosphopantothenoylcysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa) | ||||
dut | Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family. (154 aa) | ||||
nusA | Transcription termination/antitermination protein NusA; Participates in both transcription termination and antitermination. (523 aa) | ||||
AQS85038.1 | Hopanoid biosynthesis associated radical SAM protein HpnH; Derived by automated computational analysis using gene prediction method: Protein Homology. (398 aa) | ||||
dxs | 1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (677 aa) | ||||
AQS85042.1 | Hopanoid biosynthesis associated radical SAM protein HpnJ; Derived by automated computational analysis using gene prediction method: Protein Homology. (474 aa) | ||||
dnaX | DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (669 aa) | ||||
AQS85058.1 | Damage-inducible protein CinA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (167 aa) | ||||
AQS85072.1 | Creatininase; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa) | ||||
carA | Carbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (472 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1084 aa) | ||||
nadD | Nicotinate-nicotinamide nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (221 aa) | ||||
proA | Gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (423 aa) | ||||
AQS86419.1 | Coproporphyrinogen III oxidase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family. (385 aa) | ||||
AQS85137.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (189 aa) | ||||
AQS85149.1 | Cyclic pyranopterin monophosphate synthase accessory protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (173 aa) | ||||
AQS85161.1 | Delta-aminolevulinic acid dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ALAD family. (331 aa) | ||||
A0U92_10660 | Hypothetical protein; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (182 aa) | ||||
AQS85171.1 | NAD-dependent epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (354 aa) | ||||
AQS85182.1 | XRE family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. (196 aa) | ||||
AQS85184.1 | Adenosylcobinamide kinase/adenosylcobinamide phosphate guanyltransferase; Catalyzes ATP-dependent phosphorylation of adenosylcobinamide and addition of GMP to adenosylcobinamide phosphate. (173 aa) | ||||
AQS86423.1 | Nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase; Catalyzes the synthesis of alpha-ribazole-5'-phosphate from nicotinate mononucleotide (NAMN) and 5,6-dimethylbenzimidazole (DMB). (343 aa) | ||||
cobS | Cobalamin synthase; Joins adenosylcobinamide-GDP and alpha-ribazole to generate adenosylcobalamin (Ado-cobalamin). Also synthesizes adenosylcobalamin 5'-phosphate from adenosylcobinamide-GDP and alpha-ribazole 5'- phosphate; Belongs to the CobS family. (260 aa) | ||||
AQS85197.1 | Nucleoside triphosphate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa) | ||||
AQS86426.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (251 aa) | ||||
AQS85200.1 | Ribonucleotide-diphosphate reductase subunit beta; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (333 aa) | ||||
AQS85206.1 | Nicotinamidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa) | ||||
AQS85220.1 | Hopanoid C-3 methylase HpnR; Derived by automated computational analysis using gene prediction method: Protein Homology. (512 aa) | ||||
AQS85235.1 | Dihydropyrimidine dehydrogenase subunit B; NADH-dependent; catalyzes the conversion of pyrimidines to 5,6-dihydro compounds in pyrimidine degradation; Derived by automated computational analysis using gene prediction method: Protein Homology. (422 aa) | ||||
AQS86438.1 | Dihydropyrimidinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (466 aa) | ||||
coaX | Type III pantothenate kinase; Catalyzes the phosphorylation of pantothenate (Pan), the first step in CoA biosynthesis. (271 aa) | ||||
AQS85329.1 | Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (288 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (426 aa) | ||||
AQS85342.1 | NAD-dependent dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (331 aa) | ||||
ctaB | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (318 aa) | ||||
pyrH | UMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (245 aa) | ||||
rpoZ | DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (128 aa) | ||||
AQS86471.1 | 2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (173 aa) | ||||
AQS85435.1 | cob(I)yrinic acid a c-diamide adenosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Cob(I)alamin adenosyltransferase family. (191 aa) | ||||
coaD | Pantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (170 aa) | ||||
AQS86488.1 | RNA polymerase subunit sigma-24; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. (150 aa) | ||||
dxs-2 | 1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D- xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily. (660 aa) | ||||
dinB | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (436 aa) | ||||
AQS85567.1 | 8-amino-7-oxononanoate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa) | ||||
bioD | Dethiobiotin synthase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. (479 aa) | ||||
AQS85575.1 | Adenosylmethionine--8-amino-7-oxononanoate aminotransferase BioA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (419 aa) | ||||
AQS85576.1 | Molybdopterin synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (155 aa) | ||||
AQS85577.1 | Molybdopterin synthase sulfur carrier subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (87 aa) | ||||
queF | 7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). Belongs to the GTP cyclohydrolase I family. QueF type 1 subfamily. (156 aa) |