node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ALU43620.1 | ALU43625.1 | AT705_12060 | AT705_12085 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ALU43620.1 | atpA | AT705_12060 | AT705_12065 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
ALU43620.1 | atpC | AT705_12060 | AT705_12050 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | 0.999 |
ALU43620.1 | atpD | AT705_12060 | AT705_12055 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
ALU43620.1 | atpE | AT705_12060 | AT705_12080 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
ALU43620.1 | atpF | AT705_12060 | AT705_12075 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.999 |
ALU43620.1 | atpH | AT705_12060 | AT705_12070 | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
ALU43625.1 | ALU43620.1 | AT705_12085 | AT705_12060 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ALU43625.1 | atpA | AT705_12085 | AT705_12065 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
ALU43625.1 | atpC | AT705_12085 | AT705_12050 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | 0.999 |
ALU43625.1 | atpD | AT705_12085 | AT705_12055 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
ALU43625.1 | atpE | AT705_12085 | AT705_12080 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
ALU43625.1 | atpF | AT705_12085 | AT705_12075 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.999 |
ALU43625.1 | atpH | AT705_12085 | AT705_12070 | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpA | ALU43620.1 | AT705_12065 | AT705_12060 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is a regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
atpA | ALU43625.1 | AT705_12065 | AT705_12085 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase F0F1 subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. Subunit A is part of the membrane proton channel F0; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
atpA | atpC | AT705_12065 | AT705_12050 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | 0.999 |
atpA | atpD | AT705_12065 | AT705_12055 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
atpA | atpE | AT705_12065 | AT705_12080 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpA | atpF | AT705_12065 | AT705_12075 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.999 |