STRINGSTRING
purH purH ARG98925.1 ARG98925.1 atpB atpB atpE atpE atpF atpF atpH atpH atpA atpA atpG atpG atpD atpD atpC atpC ARG98641.1 ARG98641.1 pykA pykA pgk pgk carA-2 carA-2 ARG98398.1 ARG98398.1 purN purN purD purD purF purF purC purC purQ purQ purM purM purL purL accC-2 accC-2 adk adk pyrF pyrF ybeX ybeX coaE coaE relA relA accD accD ARG97602.1 ARG97602.1 sucA sucA sucB sucB sucC sucC coaD coaD ARG96496.1 ARG96496.1 ARG96524.1 ARG96524.1 ARG96566.1 ARG96566.1 eno eno ARG96629.1 ARG96629.1 hmgA hmgA upp upp carA carA gmk gmk spoT spoT udk udk pyrB pyrB ARG96873.1 ARG96873.1 ARG96909.1 ARG96909.1 pfp pfp fliI fliI ARG97022.1 ARG97022.1 purE purE purK purK pgi pgi accA accA purB purB pyrG pyrG guaB guaB guaA guaA pyrH pyrH aceE aceE tpi tpi yciA yciA acsA acsA aldob aldob pta pta ackA ackA ndk ndk pdhA pdhA surE surE pyrE pyrE ribF ribF coaX coaX fliI-2 fliI-2 ARG98015.1 ARG98015.1 pyrD pyrD citE citE aceF aceF purA purA coaBC coaBC nudE nudE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (530 aa)
ARG98925.1GNAT family N-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (316 aa)
atpBF0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (274 aa)
atpEF0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (91 aa)
atpFF0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa)
atpHF0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (181 aa)
atpAATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (517 aa)
atpGF0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (288 aa)
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (459 aa)
atpCF0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa)
ARG98641.1Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (127 aa)
pykAPyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (473 aa)
pgkPhosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (396 aa)
carA-2Carbamoyl phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (363 aa)
ARG98398.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (197 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (438 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (502 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (331 aa)
purQPhosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...] (421 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (347 aa)
purLPhosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (779 aa)
accC-2acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (446 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (227 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (230 aa)
ybeXMagnesium/cobalt efflux protein; Involved in the transport of magnesium and cobalt ions; Derived by automated computational analysis using gene prediction method: Protein Homology. (276 aa)
coaEdephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (200 aa)
relAGTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (734 aa)
accDacetyl-CoA carboxylase carboxyl transferase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (290 aa)
ARG97602.1Hypoxanthine-guanine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (186 aa)
sucA2-oxoglutarate dehydrogenase subunit E1; Derived by automated computational analysis using gene prediction method: Protein Homology. (935 aa)
sucBDihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (403 aa)
sucCsuccinate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (386 aa)
coaDPantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (169 aa)
ARG96496.1MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (745 aa)
ARG96524.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (598 aa)
ARG96566.1Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (157 aa)
enoPhosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (423 aa)
ARG96629.1Diphosphomevalonate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (315 aa)
hmgAhydroxymethylglutaryl-CoA reductase, degradative; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HMG-CoA reductase family. (433 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (214 aa)
carACarbamoyl-phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (370 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (209 aa)
spoTBifunctional GTP diphosphokinase/guanosine-3',5'-bis(diphosphate) 3'-diphosphatase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (707 aa)
udkUridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
pyrBAspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (296 aa)
ARG96873.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (203 aa)
ARG96909.1Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (124 aa)
pfp6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions. (411 aa)
fliIFlagellum-specific ATP synthase FliI; Involved in type III protein export during flagellum assembly; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa)
ARG97022.1enoyl-CoA hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa)
purE5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (168 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (365 aa)
pgiGlucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (505 aa)
accAacetyl-CoA carboxylase carboxyl transferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (317 aa)
purBAdenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (547 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (490 aa)
guaAGMP synthase (glutamine-hydrolyzing); Catalyzes the synthesis of GMP from XMP. (525 aa)
pyrHUMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (247 aa)
aceEPyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa)
tpiTriose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (249 aa)
yciAacyl-CoA thioesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa)
acsAacetate--CoA ligase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (630 aa)
aldobFructose-bisphosphate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (336 aa)
ptaPhosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (687 aa)
ackAHypothetical protein; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (390 aa)
ndkNucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (141 aa)
pdhAPyruvate dehydrogenase (acetyl-transferring) E1 component subunit alpha; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (357 aa)
surE5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (252 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (210 aa)
ribFBifunctional riboflavin kinase/FMN adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (318 aa)
coaXType III pantothenate kinase; Catalyzes the phosphorylation of pantothenate (Pan), the first step in CoA biosynthesis. (255 aa)
fliI-2Flagellar protein export ATPase FliI; Derived by automated computational analysis using gene prediction method: Protein Homology. (447 aa)
ARG98015.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (276 aa)
pyrDDihydroorotate dehydrogenase (quinone); Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (331 aa)
citECoA ester lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HpcH/HpaI aldolase family. (284 aa)
aceFDihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (532 aa)
purAAdenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
coaBCBifunctional 4'-phosphopantothenoylcysteine decarboxylase/phosphopantothenoylcysteine synthetase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (406 aa)
nudEADP compounds hydrolase NudE; Derived by automated computational analysis using gene prediction method: Protein Homology. (182 aa)
Your Current Organism:
Tatlockia micdadei
NCBI taxonomy Id: 451
Other names: ATCC 33218, CCUG 11882, CIP 103882, DSM 16640, Legionella micdadei, Legionella pittsburghensis, NCTC 11371, T. micdadei, strain TATLOCK
Server load: low (16%) [HD]