STRINGSTRING
cysC cysC nadD nadD glgC glgC ribF ribF glnE glnE coaD coaD cysD cysD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cysCAdenylylsulfate kinase; Catalyzes the synthesis of activated sulfate. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (637 aa)
nadDNicotinate-nucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (209 aa)
glgCGlucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc; Belongs to the bacterial/plant glucose-1-phosphate adenylyltransferase family. (419 aa)
ribFRiboflavin biosynthesis protein RibF/FAD synthase; Belongs to the ribF family. (312 aa)
glnEGlutamate-ammonia-ligase adenylyltransferase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal transd [...] (895 aa)
coaDPantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (170 aa)
cysDSulfate adenylyltransferase subunit 2. (303 aa)
Your Current Organism:
Sphingobium japonicum
NCBI taxonomy Id: 452662
Other names: S. japonicum UT26S, Sphingobium japonicum UT26, Sphingobium japonicum UT26S, Sphingobium japonicum str. UT26S, Sphingobium japonicum strain UT26S
Server load: low (16%) [HD]