STRINGSTRING
psaB psaB ndhK ndhK psaC psaC ndhI ndhI C5X9Z9_SORBI C5X9Z9_SORBI C5XIC9_SORBI C5XIC9_SORBI LIP1P LIP1P C5XVE8_SORBI C5XVE8_SORBI C5Y6L0_SORBI C5Y6L0_SORBI LIP1 LIP1 C5YB69_SORBI C5YB69_SORBI C5YES0_SORBI C5YES0_SORBI C5YIC1_SORBI C5YIC1_SORBI C5YUG3_SORBI C5YUG3_SORBI C5Z6B7_SORBI C5Z6B7_SORBI Q1KSB0_SORBI Q1KSB0_SORBI psaA psaA A0A1W0W7Q9 A0A1W0W7Q9 A0A1W0W0M8 A0A1W0W0M8 A0A1B6QFX4 A0A1B6QFX4 A0A1B6PP24 A0A1B6PP24 A0A1B6PII2 A0A1B6PII2 NBP35 NBP35 NTH1 NTH1 A0A1Z5R7Q4 A0A1Z5R7Q4 A0A1Z5RNG0 A0A1Z5RNG0
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psaBPhotosystem I P700 chlorophyll a apoprotein A2; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (734 aa)
ndhKNAD(P)H-quinone oxidoreductase subunit K, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 20 kDa subunit family. (227 aa)
psaCPhotosystem I iron-sulfur center; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, [...] (81 aa)
ndhINAD(P)H-quinone oxidoreductase subunit I, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 23 kDa subunit family. (180 aa)
C5X9Z9_SORBIAconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (979 aa)
C5XIC9_SORBIOxidored_q6 domain-containing protein; Belongs to the complex I 20 kDa subunit family. (200 aa)
LIP1PLipoyl synthase, chloroplastic; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives; Belongs to the radical SAM superfamily. Lipoyl synthase family. (368 aa)
C5XVE8_SORBIDNA polymerase. (1101 aa)
C5Y6L0_SORBIDNA polymerase. (1099 aa)
LIP1Lipoyl synthase, mitochondrial; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives; Belongs to the radical SAM superfamily. Lipoyl synthase family. (386 aa)
C5YB69_SORBIAconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (904 aa)
C5YES0_SORBIDNA primase large subunit; DNA primase is the polymerase that synthesizes small RNA primers for the Okazaki fragments made during discontinuous DNA replication; Belongs to the eukaryotic-type primase large subunit family. (465 aa)
C5YIC1_SORBIAconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (996 aa)
C5YUG3_SORBIOxidored_q6 domain-containing protein; Belongs to the complex I 20 kDa subunit family. (202 aa)
C5Z6B7_SORBIFerredoxin-thioredoxin reductase, catalytic chain; Catalytic subunit of the ferredoxin-thioredoxin reductase (FTR), which catalyzes the two-electron reduction of thioredoxins by the electrons provided by reduced ferredoxin. (154 aa)
Q1KSB0_SORBIAconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate. (991 aa)
psaAPhotosystem I P700 chlorophyll a apoprotein A1; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin. (750 aa)
A0A1W0W7Q9DNA polymerase. (1796 aa)
A0A1W0W0M8DNA polymerase. (1313 aa)
A0A1B6QFX4NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. (499 aa)
A0A1B6PP24Anamorsin homolog; Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery. Required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the cytosolic Fe-S scaffold complex. Electrons are transferred from NADPH via a FAD- and FMN-containing diflavin oxidoreductase. Together with the diflavin oxidoreductase, also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RN [...] (263 aa)
A0A1B6PII2Uncharacterized protein. (381 aa)
NBP35Cytosolic Fe-S cluster assembly factor NBP35; Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery. Required for maturation of extramitochondrial Fe-S proteins. Functions as Fe-S scaffold, mediating the de novo assembly of an Fe-S cluster and its transfer to target apoproteins. Essential for embryo development. (388 aa)
NTH1Endonuclease III homolog; Bifunctional DNA N-glycosylase with associated apurinic/apyrimidinic (AP) lyase function that catalyzes the first step in base excision repair (BER), the primary repair pathway for the repair of oxidative DNA damage. The DNA N-glycosylase activity releases the damaged DNA base from DNA by cleaving the N-glycosidic bond, leaving an AP site. The AP lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination. Primarily recognizes and repairs oxidative base damage of pyrimidines. (374 aa)
A0A1Z5R7Q4Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). (352 aa)
A0A1Z5RNG0DNA polymerase epsilon catalytic subunit; DNA polymerase II participates in chromosomal DNA replication; Belongs to the DNA polymerase type-B family. (2097 aa)
Your Current Organism:
Sorghum bicolor
NCBI taxonomy Id: 4558
Other names: Andropogon sorghum, Andropogon sorghum (L.) Brot., S. bicolor, Sorghum bicolor (L.) Moench, Sorghum bicolor subsp. bicolor, Sorghum nervosum, Sorghum nervosum Besser ex Schult., Sorghum saccharatum, Sorghum saccharatum (L.) Moench, Sorghum vulgare, Sorghum vulgare Pers., broomcorn, milo, sorghum
Server load: low (28%) [HD]