STRINGSTRING
AQZ83703.1 AQZ83703.1 nuoB nuoB nuoC nuoC AQZ80762.1 AQZ80762.1 AQZ80763.1 AQZ80763.1 AQZ80764.1 AQZ80764.1 nuoH nuoH nuoI nuoI AQZ80767.1 AQZ80767.1 nuoK nuoK AQZ80769.1 AQZ80769.1 AQZ80770.1 AQZ80770.1 nuoN nuoN AQZ80844.1 AQZ80844.1 AQZ82331.1 AQZ82331.1 AQZ82332.1 AQZ82332.1 AQZ82333.1 AQZ82333.1 AQZ82334.1 AQZ82334.1 cyoE cyoE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AQZ83703.1NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. (159 aa)
nuoBNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (225 aa)
nuoCNADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (595 aa)
AQZ80762.1NADH-quinone oxidoreductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology. (169 aa)
AQZ80763.1NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (443 aa)
AQZ80764.1NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (894 aa)
nuoHNADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (338 aa)
nuoINADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa)
AQZ80767.1NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (173 aa)
nuoKNADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (102 aa)
AQZ80769.1NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (629 aa)
AQZ80770.1NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (532 aa)
nuoNNADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (498 aa)
AQZ80844.1Ferredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (87 aa)
AQZ82331.1Ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa)
AQZ82332.1Cytochrome ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (663 aa)
AQZ82333.1Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (206 aa)
AQZ82334.1Cytochrome o ubiquinol oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology. (109 aa)
cyoEProtoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (292 aa)
Your Current Organism:
Acinetobacter calcoaceticus
NCBI taxonomy Id: 471
Other names: A. calcoaceticus, ATCC 23055, Acinetobacter genomosp. 1, Acinetobacter genomospecies 1, Acinetobacter sp. AV6, Acinetobacter sp. HNR, Acinetobacter sp. STB1, CAIM 17, CCUG 12804, CIP 81.8, DSM 30006, JCM 6842, Micrococcus calcoaceticus, Moraxella calcoacetica, NCCB 22016, NCTC 12983, Neisseria winogradskyi
Server load: low (18%) [HD]