STRINGSTRING
rplY rplY rplU rplU rpmA rpmA rpsT rpsT CCH87403.1 CCH87403.1 rpsD rpsD rplT rplT rpmI rpmI efp efp rpsO rpsO rpsB rpsB rplS rplS rpsP rpsP rpmF rpmF rpmB rpmB rpmE rpmE rpsI rpsI rplM rplM rplQ rplQ rpsD-2 rpsD-2 rpsK rpsK rpsM rpsM rpmJ rpmJ infA infA secY secY rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsZ rpsZ rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rpsS rpsS rplB rplB rplW rplW rplD rplD rplC rplC rpsJ rpsJ fusA fusA rpsG rpsG rpsL rpsL rplL rplL rplJ rplJ rplA rplA rplK rplK rpmG rpmG rplI rplI rpsR rpsR rpsF rpsF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rplY50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (230 aa)
rplUFragment of Ribonuclease, Rne/Rng family (part 2); This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (104 aa)
rpmA50S ribosomal subunit protein L27; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL27 family. (91 aa)
rpsT30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (86 aa)
CCH87403.1Homologs of previously reported genes of unknown function. (478 aa)
rpsD30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (201 aa)
rplT50S ribosomal subunit protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (126 aa)
rpmI50S ribosomal protein L35; Function of strongly homologous gene; structure; Belongs to the bacterial ribosomal protein bL35 family. (64 aa)
efpElongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (186 aa)
rpsO30S ribosomal subunit protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa)
rpsB30S ribosomal protein S2; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the universal ribosomal protein uS2 family. (318 aa)
rplS50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa)
rpsP30S ribosomal protein S16; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bS16 family. (164 aa)
rpmF50S ribosomal protein L32 2; Function of strongly homologous gene; structure; Belongs to the bacterial ribosomal protein bL32 family. (59 aa)
rpmB50S ribosomal protein L28; Function of strongly homologous gene; structure; Belongs to the bacterial ribosomal protein bL28 family. (63 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (76 aa)
rpsI30S ribosomal protein S9; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the universal ribosomal protein uS9 family. (139 aa)
rplM50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (147 aa)
rplQ50S ribosomal protein L17; Function of strongly homologous gene; structure. (264 aa)
rpsD-230S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (208 aa)
rpsK30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (122 aa)
rpsM30S ribosomal subunit protein S13; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the universal ribosomal protein uS13 family. (110 aa)
rpmJ50S ribosomal protein L36; Function of homologous gene experimentally demonstrated in an other organism; structure; Belongs to the bacterial ribosomal protein bL36 family. (37 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (73 aa)
secYPreprotein translocase secY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (436 aa)
rplO50S ribosomal subunit protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (127 aa)
rpmD50S ribosomal protein L30; Function of homologous gene experimentally demonstrated in an other organism; structure. (60 aa)
rpsE30S ribosomal subunit protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (212 aa)
rplR50S ribosomal subunit protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (138 aa)
rplF50S ribosomal subunit protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. (165 aa)
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (136 aa)
rpsZ30S ribosomal protein S14 type Z; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa)
rplE50S ribosomal subunit protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (194 aa)
rplX50S ribosomal subunit protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (115 aa)
rplN50S ribosomal subunit protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (143 aa)
rpsQ30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (99 aa)
rpmC50S ribosomal protein L29; Function of strongly homologous gene; structure; Belongs to the universal ribosomal protein uL29 family. (77 aa)
rplP50S ribosomal subunit protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (138 aa)
rpsC30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (304 aa)
rplVLSU ribosomal protein L22P; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (154 aa)
rpsS30S ribosomal subunit protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (93 aa)
rplB50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (277 aa)
rplW50S ribosomal subunit protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (100 aa)
rplD50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (266 aa)
rplC50S ribosomal subunit protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (207 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (101 aa)
fusAElongation factor G (EF-G); Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (699 aa)
rpsG30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (140 aa)
rpsL30S ribosomal subunit protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (124 aa)
rplL50S ribosomal subunit protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (129 aa)
rplJ50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (204 aa)
rplA50S ribosomal subunit protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (239 aa)
rplK50S ribosomal subunit protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (142 aa)
rpmG50S ribosomal protein L33 2; Function of strongly homologous gene; structure; Belongs to the bacterial ribosomal protein bL33 family. (54 aa)
rplI50S ribosomal protein L9; Binds to the 23S rRNA. (151 aa)
rpsR30S ribosomal subunit protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (78 aa)
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (95 aa)
Your Current Organism:
Modestobacter marinus
NCBI taxonomy Id: 477641
Other names: CGMCC 4.5581, DSM 45201, M. marinus, Modestobacter marinus Xiao et al. 2011, Modestobacter sp. 42H12-1, strain 42H12-1
Server load: medium (62%) [HD]